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PREFACE

This is not a treatise on the Mechanics of Materials.

The efforts of Merriman, Burr, Lanza, and others cover

the field so thoroughly that there is no present need of

such a work.

It is designed to be an elementary text-book for students

in the engineering courses in colleges and universities,

where the time allotted to the subject does not exceed

three or four recitations per week, for one half year, and

where the course is preceded by college courses in mathe-

matics, through integral calculus, mechanics, and physics.

The extreme mathematical treatment of the subject has

been avoided, but where the use of higher mathematics

leads to clearness they have been freely used.

As it is intended as a text-book, the general cases are

discussed fully, leaving the student to derive the formulas

for special cases as part of the regular problem work.

At the end of each chapter there are review questions

covering the more important parts of the subjects dis-

cussed and problems illustrating the same. The solution

of one problem of each type has been given to show the

application of the general formulas.

The appendix contains tables giving the values of the

engineering constants of materials and the formulas com-

monly used in design, in addition to the tables usually

found in books of this character.

The notation has been made uniform Avith that of Mer-

riman's works, so that his more complete treatise on the

subject may be conveniently used as a reference book.

New York, January, 1909.
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MECHANICS OF MATERIALS

CHAPTER I

APPLIED MECHANICS

Article 1. Forces in Structures.

One of the problems that confronts the engineer called

upon to design any machine or structure is to so propor-

tion the various parts that they will resist the forces that

act on them.

To do this, he must apply the laws of mechanics to the

forces to be resisted, and study the action of the materials

under the same forces.

This application of mechanics may be termed Applied

Mechanics or the Mechanics of Materials.

If we consider any structure or any member of the

structure to be at rest, according to the laws of mechanics

the forces that act on the structure or member must be in

equilibrium. The various parts of a machine often have

relative motion, but by introducing a force equal and op-

posite to the force which produces that motion, the forces

that act on the member of a machine may also be treated

as a system of forces in equilibrium.

In the more extended treatment of this subject the

forces are taken as acting in different planes. The simpler

theory that treats the forces as coplanar is the one that

will be used here.

1



2 MECHANICS OF MATERIALS

Since each member must be designed separately, if the

forces that act on any member are determined, we will find

that the forces may be resolved into

:

Forces tending to lengthen the member,

Forces tending to shorten the member,

Forces tending to bend the member.

Forces tending to shear the member.

Imagine any body, acted on by a system of forces in

equilibrium, denoting the sum of the components of the

forces parallel to some line as the X forces, and those per-

pendicular to the same line as the 1^ forces; the sum of the

X foi'ces is zero and the sum of the Y forces is zero. If

we take as the line of reference the axis of the body pass-

ing through the center of gravity of the body, the result-

ant of the X forces will be a couple, unless the lines of

action of the forces of the couple coincide with the axis.

Each force of this couple may be replaced by a single

force of equal magnitude, acting in the line of the axis and

a couple whose moment is the moment of the force about a

point in the axis. The X forces acting in the line of the

axis will tend to either lengthen or shorten the member

in the line of the axis, and the couple as well as the Y
forces will tend to bend the member.

If the member be cut by a plane perpendicular to the

axis, the Y forces on either side of the section will be

opposite in sign, and in general tend to slide one part of

the member, relative to the other, along the plane of the

section. Any of the resultants may be zero, and in that

case there would be no tendency to deformation in that

line.

The force acting on any member is always transmitted

by a surface of finite area, but by considering that each
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elementary area of the surfaces in contact transmits the

same amount of pressure, we may use the resultant of

these elementary pressures passing through the center of

gravity of the areas in contact, as the force applied.

Art. 2. Axial Forces.

When the lines of action of the acting forces lie in

the axis of the body, passing through the centers of

gravity of all sections perpendicular to the axis, the forces

are called Axial

Forces, and their

effect is to

either lengthen

or shorten the

member.

V V

\
a

\^
Fig. 4.

a
Art. 3. A Bar.

The member

may have any

shape whatever,

JC the simplest be-

ing a prismatic

or cylindrical

form, where any section perpendicular

to the axis has the same shape and area.

This form will be called a Ba7\

Art. 4. Internal Forces or Stresses.

Let Fig. 4 represent a bar under the

action of the axial forces P and P.

Suppose the bar to be cut by any plane

through the axis into the segments a

and 5, and consider the segment a.
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This segment is acted on by the external force P, and as a

part of the whole bar it is in equilibrium ; hence there must

be forces acting in the plane section X-X^ whose resultant

acts in the same line, and is equal and opposite to the force

P. As the same is true of the segment 6, the internal

forces, called stresses, acting between a and 5, hold the

segments a and h in equilibrium against the external forces.

Therefore, in any plane section of the bar there exists

a pair of equal and opposite forces or stresses, each of

which are induced by and resist the external forces. In

general, the stresses may be resolved into components

parallel and perpendicular to the plane section. The

components parallel to the plane of the section prevent

the sliding of the segments along the plane, and are

termed Shearing Sti'esses^ while those perpendicular to the

plane are called either Tensile or Compressive Stresses^

depending on whether they tend to extend or compress

the particles on which they act.

Art. 5. Tensile or Compressive Stresses.

When the external forces are axial, and the section per-

pendicular to the axis, the stresses can have no component

parallel to the plane of the section; hence axial forces can

produce only tensile or compressive stresses in planes per-

pendicular to the axis. The plane dividing the bar into

the segments a and h was any plane ; hence the reasoning

holds true for all such planes, and there are only tensile or

compressive stresses equal to the external force P, in all

sections perpendicular to the axis.

Art. 6. Unit Stress.

Since the force P is the resultant of all the equal unit

pressures on the areas in contact, it is reasonable to assume
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that the stresses on each unit of area of the plane section

are also equal, and if iS equals the sum of the stresses

acting on each unit of area of the plane section, and A is

the area of that section, then

P = AS. («)

S is termed the unit stress, and is the resisting force per

square unit of area ; hence S must be expressed in the

same units as -P and A.

Art. 7. Maximum Tensile or Compressive Stresses.

When the cutting plane is not perpendicular to the

axis, the resultant stress may be resolved into components

parallel and perpendicular to the plane of the section,

those perpendicular being either tensile or compressive

stresses, while those parallel are shearing stresses.

As neither component can equal the resultant, it is evi-

dent that the maximum tensile or compressive stresses

will be found in a section perpendicular to the axis. In

such a section there are no shearing stresses, and when

the bar has a uniform section area A, the formula (a) will

determine the maximum tensile or compressive unit stress

induced by the axial force P. If the areas of all sections

j)erpendicular to the axis are not equal, the greatest unit

stress will be found where the section area is the least,

and the value of A to be used in formula («) is the area

of the least section.

Art. 8. Shearing Stresses.

When the external forces act in adjacent parallel lines,

since the stresses can have no component perpendicular to

the line of action of the forces, the stress in a section

parallel to the line of action of the forces must be a
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Shearing Stress^ as the external forces tend to slide the two

sections of the bar along the plane of the section. (Fig. 2.

)

Assuminor that the stress is uniformly distributed over

the section, and that Sg is the unit stress in shear, then

formula (a) P = AS^, where A is the area of the section

Fig. 8.

parallel to the line of the forces and P the forces pro-

ducing the shear, will always give the relation between

the external forces and the maximum unit shearing stress

in the section.

Art. 9. External and Internal Forces.

The external forces on any member of a machine or

structure are the weights or loads that member has to

support and the pressure it receives from the adjacent

members, while the internal forces are those that transmit

the external force from element to element through the

member. These latter forces are stresses, and the inter-

nal force per unit of area is the Unit Stress, and will be

designated by the letter S. with a subscript t, c, or s, as

the stress is tension, compression, or shear.

The formula P = AS is a general one and applies to all

cases where the stress is uniformly distributed over the

area of any plane section A. and aS', the kind of unit

stress.
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Art. 10. Deformation of Elastic Bodies.

In the study of mechanics, the forces were assumed to

act on rigid bodies; tliat is, on bodies whose shape was not

altered by the application of the force. As there are no

rigid bodies in nature, every force applied produces some

deformation or change of shape. This fact, however, does

not prevent the application of the laws of mechanics to

elastic bodies under the action of force after the deforma-

tion has taken place, since equilibrium must exist at that

time.

Art. 11. Unit Deformations.

Consider a bar, I units in length, and A square units in

section, under the action of an axial force P. From equa-

P
tion (a), aS' = —-. aS'Is constant, since P and A are constant

A
for all sections perpendicular to the axis, or each square

unit of every section is acted on by a force S.

Suppose the bar to be divided into bars, each one unit

in section and I units long, then each of these bars is acted

on by a force S. The change in the length Z, that may
take place under the force aS', being e, since all particles

are under the same force, the change in the length must

be equal to the length I, multiplied by the unit load S^

and some number which depends on the nature of the

material. Calling this number—,. the value of e must beE
e ='—. This may be written - = '—. Letting - = e equal

the change in the length of a bar one unit in length, or the

unit deformation, it follows that e = — orE
jji _S^_ unit stress ^tn

6 unit deformation
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Art. 12. Modulus or Coefficient of Elasticity.

If the value of S does not exceed a critical value which

varies for different materials, ^ will be constant for all

values of S, and this constant is called the Modulus or Co-

efficient of Elasticity. This constant is the value of the

ratio of the unit stress to the unit deformation, as may be

seen by the inspection of formula (6).

PI P
Equation (5) may be written E = —-, since S = — and

€ = -, and as A and I are constants for any bar under axial

forces, E will be constant when e varies directly with P.

Art. 13. Elastic Limit.

If a bar length I is subjected to a small axial force P, it

is observed that the length has changed a certain small

amount. If P^ is twice P, experiment shows that the

change in length is twice that due to P, and if P„ is n

times P, the change in the length is n times that due to

P, provided that P„ does not exceed a certain limiting

value which varies for each material and bar. That is,

within that limit the change in length of any bar is pro-

portional to the external force applied. If P„ is the

limiting value for a given bar, then the corresponding

value of S as derived from formula (a) must be the

limiting value of the unit stress. This value of aS', being

a unit stress, is independent of the dimensions of the

bar and depends only on the material of the bar, is

called the Elastic Limit of the material or the limit of

elasticity.

The elastic limit of a material may be defined as the

unit stress for which the deformations cease to be propor-

tional to the applied force.
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To determine this value of S for any material, axial loads

are applied to a bar of the material, the loads being applied

in small equal increments, and the change in length due to

each increment of load measured. For any total load less

than the load producing a stress equal to the elastic limit,

the last increment of load should produce the same change

in length as any previous increment. Therefore, when an

increase in the change in length for any equal increment

of load is noted, the elastic limit has been passed. It will

be noticed that the exact value of elastic limit depends on

the accuracy with which the loads and especially the de-

formations are measured.

It has also been observed that if the stress in any bar is

less than the elastic limit, the bar will return to its origi-

nal length when the load is removed, and if the stress is

slightly above the elastic limit, there will be some perma-

nent change in the length of the bar. The unit stress at

which this yielding takes place is called the Yield Point

or the Commercial Elastic Limit. The latter term comes

from the commercial practice of determining the elastic

limit by the drop of the beam in the testing machine.

While the yield point or commercial elastic limit

is from 3 to 5 % higher than the true elastic limit, the ease

with which the latter value may be determined and the

fact that the allowable value of S for any engineering

structure rarely exceeds one half of the elastic limit, com-

bine to make it the one in general use.

Art. 14. Ultimate Strength.

After the elastic limit is reached, the change in length

increases more and more rapidly as the loads are increased,

and finally a load is reached that causes the bar to rupture.
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If P is the load that causes rupture and A is the original

area of the bar, then the value of aS' obtained from formula

(a) is called the Ultimate Strength of the material.

Art. 15. Resilience.

If a bar of wrought iron, whose section area is A^ and

the length I as measured between two punch marks on

the bar, is placed in a testing machine, the tensile loads

and their corresponding extensions being measured and

plotted to scale on section paper, the result would be a.

diagram similar to that in Fig. 15.

h
•^
^
^ ^^ '

^

§
•^ ^^-"^^
^ /l
to
CO

CO

xl
1

1
l\

y J Change in length, or unif-cjeformation.

Fig. 15.

e

Since P = ^aS', the ordinates representing loads may,,

by a change of scale, represent unit stresses, and the ab-

scissa representing total elongations may also represent

unit elongations. Such a diagram is called a Stress-strain

diagram. The use of the word "strain" gives it the

meaning of "unit deformation." Authorities do not agree

on the use of the word, some giving it the meaning as

above, while others use it to mean load. On account of



APPLIED MECHANICS 11

this ambiguity, the term "unit deformation" will be used

in its place. The unit stress for any load is obtained by

dividing the load by the original area, and the unit elon-

gations by dividing the elongation for any load by the

original length I.

The point a on the curve is the elastic limit, and b

is the ultimate strength of the material. After a load

corresponding to h is reached, the bar begins to reduce at

some point very rapidly, finally breaking at a load less

than the load at h. This load is called the Breaking Load^

and has but little significance in engineering work.

Since one coordinate represents force, and the other

space, the area o a h c e^ when measured in the proper

units, is the work done in breaking a bar of unit volume.

If we define the Ultimate Resilienee as the work done in

breaking a bar of unit volume, the area represents that

quantity.

Art. 16. Ductility.

As the whole curve is rarely ever determined, the Duc-

tility^ a term that is defined by its method of calculation

and is proportional to the ultimate resilience, is generally

used in its place.

The ductility of any material is calculated as follows:

After the bar has been broken by a tensile load, the pieces

are removed from the testing machine and the broken ends

placed together. The distance between the original punch

marks, being ?, has now increased tol-\-p', then ^ is called

the Ductility^ and is usually stated as a percentage of the

original length.
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Art. 17. Elastic Resilience.

The area oaf is easily calculated, as it is the area of

a triangle, and when measured in work units is called the

Elastic Resilience. This work is evidently

the unit stress at 6g x the unit deformation at a

2

Calling this value ^, it is the elastic resilience of the

material, or the work done in raising the unit stress in a

bar of unit volume from to the elastic limit.

The same reasoning is true for any stress less than the

elastic limit, giving a method of calculating the work

necessary to produce any given stress less than the elastic

limit in a bar of unit volume. If >S' is any stress less than

the elastic limit, and e the unit deformation at that stress,

then A: = J iS'e is the work done per unit of volume, and

the work done on any bar whose volume is V is V
times that quantity. Taking the work done on any

P e
bar as ^ Se x V] substituting for S its value -— , for e, -^

and for FJ Al^ the expression for the work done on any

1 Pe
bar reduces to IC=- —— which is in terms of the total

2 Al
load and deformation, and is true when P is less than the

load, causing a stress within the elastic limit.

Art. 18. Use of Formulas.

Whenever any stress can be assumed to be uniformly

distributed over the area of any section of a bar, formula

(a), P = AS^ gives the relation between the load and the

stresses on that area, and any two of these quantities

involved being given, the other may be found.

The relation between the load and the deformation for



APPLIED MECHANICS 13

S PI . .

such cases is given by U = — = —— , which is true when
e Ae

S = — is less than the elastic limit, and is applicable to
A.

all problems involving the deformations of a bar under

axial loads.

Also k = i Se and K= - —- can be used under the^
2 Al

same conditions when the data for the problem include a

consideration of the work done in deforming a bar. When
the load is axial and the stress may be taken as uniformly

distributed over the area of any section, these three equa-

tions furnish the means for the design and investigations

of the strength of all members of a structure or machine.

Writing (a) S = ^, (5) U=-, and ^= J Se, it will be
A e

"

noticed that the equations are simply the algebraic ex-

pressions of the definitions of Unit Stress, Modulus of

Elasticity, and the Unit Resilience, making it easier to

remember either the formula or the definition.

Art. 19. Constants of Material.

These three equations make use of the following con-

stants of materials:

Elastic Limit,

Ultimate Strength,

Modulus of Elasticity, and

Modulus of Elastic Resilience,

all of which have to be determined by experimental work

on bars of the various materials. As this work cannot be

done for each problem, a table containing average values

of these constants for the more common materials will be

found in the Appendix, and the question of the units in

which each is expressed becomes important.



14 MECHANICS OF MATERIALS

Art. 20. Units.

In American practice, the linear unit is the inch; the

square unit, the square inch, and the unit of weight, the

pound.

In the tables, the values of E. L., U., and E., are given

in pounds / square inch and k in inch pounds. Therefore

when the solution of any problem requires the use of any

of these constants, all of the quantities involving weights

or loads must be in pounds, and those involving linear

or square measure, in inches.

Art. 21. Working Stresses ; Factors of Safety.

No material is entirely free from flaws and imperfections,

which tend to diminish the area that is effective in resist-

ing the external force, and in no case should the stress in

any member be greater than the elastic limit, as such a

stress would cause some permanent deformation. Sud-

denly applied loads, shocks, and loads producing alternate

tension and compression, all produce stresses that are

p
Sfreater than the value of S= — , which is the value of S^ A
for the same loads gradually and steadily applied. When
any of these conditions occur, they tend to reduce the

allowable or safe value of S to be used in the equation

P = AS. Therefore, if U is the ultimate strength of the

material, the allowable value of the unit stress can be found

by dividing the ultimate strength by some number. Calling

this number the Factor of Safety^ F^ S = —\^ the value of
F

S to be used in connection with the formula P = AS, and

is termed the Safe or Working Stress.

The factor F depends—
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1. On the reliability of the material ; that is, the lia-

bility of flaws or imperfections that may reduce the effect-

ive area of the section.

2. On the way in which the loads are applied.

The first part has been termed a factor of ignorance,

while the second may be determined more or less accurately

from theoretical considerations.

The factors of safety as given in the tables in the Appen-

dix are those to be used in the solution of the problems

given in this book, and it must be remembered that the

values are only approximate.

The safety of any structure calling for a large factor,

while the consideration of cost always demands the

smallest one, the final choice of the factor of safety to be

used in any given case must be largely a question of

engineering judgment. In some cases, as in buildings,

the allowable stress under the various kinds of loadings

is a part of the building laws, and the engineer has to

conform to the law.

For steady loads and reliable material the smallest fac-

tor in general use is about four.

On account of the danger of permanent injury to the

material, no stress should exceed the elastic limit ; hence, it

would seem better engineering to base the factor of safety

on the elastic limit rather than on the ultimate strength,

but such practice is not general in engineering work.

Akt. 22. Accuracy of Calculations.

As the use of a factor of safety of four will result in an

area of section about twice what it would have been had

the allowable stress been equal to the elastic limit, and the

values of E. L., U., and E., being determined by experi-
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ment, are liable to an error of from 3 to 5 %, there is no

necessity for absolute accuracy in the calculations for the

design of the different parts of a structure.

Students are urged to use a slide rule in the numerical

solution of the problems given in this text, not only to

save time during the college course, but because they will

find the use of a slide rule almost necessary in the prac-

tice of their profession. The slide rule should always

give results that are not in error more than 1, or at the

outside 2 %, which is close enough for the greater part of

engineering calculations.

They are warned that it is the significant figures in a

number that is to be used as a factor, and not the decimal

point, that is of importance. If in one case the area was

given as 12,500 sq. in. and as .00125 sq. in. in another,

the figure 5 is of equal importance in each case. The

use of the latter area as .0012 sq. in. will result in an error

of 4 % in the value of the stress.

EXAMINATION QUESTIONS

1. There is no relative motion between the different

parts of a bridge, therefore each part must be in equi-

librium. How is it that the same laws may be applied

to machine parts, which we know have relative motion ?

2. When may forces be considered as Axial ?

3. Define the term "Bar" as used in the text.

4. What is a stress ? If there are stresses in every

section of a bar, why is it that there is no relative motion

between the different parts ?

5. When may stresses be termed Tensile or Compres-

sive Stresses ?

6. What is a Unit Stress ?
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7. If a member of any structure varies in size at dif-

ferent parts of its length, how can you find the maximum
tensile or compressive unit stress due to an axial load ?

8. Give some examples of forces that produce tensile,

compressive, and shearing stresses.

9. What are the external forces for any member of

a structure ? What are the internal forces ?

10. Show that P = AS^ give the units involved, and the

limits of use for the formula.

11. The science of mechanics is based on the action of

forces on rigid bodies. Why is it that the same laws may
be applied to forces acting on elastic bodies ?

12. What is meant by the expression. Unit Deformation ?

13. If the modulus of elasticity for steel is 30,000,000

and for wrought iron is 25,000,000, and one bar of each is

the same size and carries the same tensile load, which bar

will stretch the most?

14. The value of E may be termed a measure of the

rigidity of a material. Why ?

15. Define Elastic Limit and Ultimate Strength.

16. Why does the Commercial Elastic Limit or Yield

Point differ from the true elastic limit ?

17. What is a Stress-strain diagram ?

18. If a load corresponding to the ultimate strength of

the material is placed on a bar, why is not that load

called the Breaking Load ? Article 14 says otherwise.

Explain.

19. What is meant by the term Ductility ?

20. Define Elastic Resilience.

21. State the formulas for calculating the elastic resili-

ence and modulus of elasticity; give the units involved and

the limits of use for each formula.
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22. What is a factor of safety ? A working stress ?

What is the difference between a working stress and a safe

stress ? What do you understand by a safe load ?

23. Show why, if the calculations for the stresses in

any member are not in error more than 2^, they are

substantially correct.

PROBLEMS

1. A square steel bar 2x2 in. in section and 4 ft.

long, carries a tensile load of 60,000 lb. Required the

unit tensile stress.

Solution. The relation between the load, area, and unit stress,

when the load is axial, is always given hj P = AS, hence substituting

for F and A, from the data given in the problem,

60,000 = i X S, or S = 15,000 Ib./sq. in.

2. A round wooden column, 16 in. in diameter and

12 ft. 6 in. long, supports a load of 20 tons. Required

the unit stress.

3. What is the value of the maximum tensile load the

bar in problem 1 will carry ?

4. A wrought iron bar is 2 in. in diameter and 5 ft.

long. What tensile load may be carried if the unit stress

does not exceed 10,000 Ib./sq. in. ?

5. What is the maximum tensile load the bar in prob-

lem 4 will support ?

6. A square cast iron column is hollow, 10 x 10 in.

on the outside and 8 x 8 in. on the inside. Required the

maximum compressive load that may be carried.

7. In problem 6, keeping the outside dimensions the

same, required the inside dimensions if the load is 360,000

lb. and the unit stress is 10,000 Ib./sq. in.

8. A punch is 1 in. in diameter. Required the prob-

able pressure necessary to force the punch through a

steel plate, ^ in. thick.
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Solution. In order to force the punch through the plate, the

unit shearing stress on an area equal to the cylindrical surface

of the punched hole must be the ultimate shearing stress of the

material ; hence,

P = 7rdt X S = Trx 1 X I X 50,000 = 8000 lb. approximately.

9. Using a punch 1 in. in diameter and an available

force of 8000 lb., what is the thickest wrought iron that

can be punched ?

10. An iron casting is bolted to the floor by four

wrought iron bolts, and a force tends to slide the casting

along the floor. Neglecting friction, what is the probable

magnitude of the force when the unit shearing stress in

the bolts is 10,000 lb. / sq. in. ?

11. If the force in problem 10 was 24,000 lb., select

four standard bolts, so that the unit shearing stress will

not exceed 10,000 lb. / sq. in.

12. If steel costs five cents per pound and wrought

iron four cents, which will it be cheaper to use to carry a

tensile load if the same factor of safety is used in each

case ?

Note. Assume the weights per cubic foot are the same for each
;

then the weights in each case will be proportional to the areas of the

sections.

13. With wrought iron at four cents per pound, and

other conditions the same as in 12, how much can you

afford to pay for steel ?

14. Required the probable elongation of the bar in

problem 1.

Solution. The relation between the elongation and an axial load

PI -

is given by ^ = — , and substituting the data as given in the prob-
Ae

lem, 30,000,000 = ^O^QQQ x ^^
. ... e = .024 in.

4e



20 MECHANICS OF MATERIALS

15. How much work is clone by the force in prob-

lem l ?

16. How much work is done by the force in prob-

lem 4 ?

17. A concrete pier 3 ft. by 4 ft. in area carries a load

of 300 tons. Required the unit stress.

18. A brick pier carries the same load with a unit

stress of 18 tons / sq. ft. Required the area of the sec-

tion.

19. The thickness of the head of a standard bolt is

approximately equal to the diameter of the bolt. Com-
pare the unit tensile stress in the bolt with the unit shear-

ing stress in the head.

20. A standard steel bolt IJ in. in diameter supports

a tensile load of 9800 lb. Required the factors of safety

for the tensile and shearing stresses.

(The least area to resist tension is at the root of the thread. See

tables.)

21. If the bar in problem 1 was 4 ft. 2 in. long and

the elongation was .025 in., required the modulus of

elasticity.

22. If the modulus of elasticity of wood is 1,500,000,

required the shortening of the column in problem 2.

23. A steel bar 1 in. in diameter has two punch

marks 8 in. apart marked on it. The bar is placed in

a testing machine and it is found that there is a rapid

change in the rate of elongation, when the load was
24,000 lb. and after a load of 47,000 lb., no more load

could be added, the bar finally breaking between the punch

marks, when the load was 42,000 lb. The broken pieces

were placed end to end, and the distance between the punch

marks was found to be 10.4 in. Required the elastic limit,

ultimate strength, and the ductility of the material.
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24. If the bar in problem 1 has the load increased

from 60,000 to 120,000 lb., how much more work is done ?

25. How much should the bar in problem 24 stretch

while the additional load is being added ?

26. A certain grade of piano wire has an elastic limit

of 100 tons / sq. in. If the diameter of a piece of the

wire is .05 in. in diameter, required the diameter of a

wrought iron wire to carry the same load when the unit

stress is equal to the elastic limit in each case.

27. Show that the work done by an axial force on

any bar is jK'= - — x volume, provided the elastic limit is
2 E

not passed.

28. If the load in problem l is suddenly applied,

what will be the value of the maximum stress induced

in the bar?

29. If a square wrought iron bar is to sustain a sud-

denly applied load of 60,000 lb. and the stress is not to

exceed 15,000 lb. / sq. in., required the dimensions of the

bar.

30. A round steel rod is to carry a tensile load of

37,700 lb. with a factor of safety of five; required the

diameter of the bar.

31. Find the factor of safety in problem 1.

32. A steel rod 2 in. in diameter in a bridge truss

has a unit stress due to the weight of the bridge of

4000 lb. / sq. in. A heavily loaded truck, if placed on

the bridge, will add 51,000 lb. load to that already on

the rod. Is it safe for the truck to cross ?



CHAPTER TI

APPLICATIONS

Article 23. Bars of Uniform Strength.

In the previous chapter, the bar was one of uniform

section and no account was taken of its weight. When
the bar was short, the effect of the weight of the bar

could be neglected in comparison with the applied loads,

and the unit stress found was that due to the loads alone.

If the bar under axial forces is very long, the stress due

to its own weight becomes too large to be neglected, and

the stress in the bar is that due to the loads plus that due

to its own weight.

Take the case of a wire rope used to hoist a bucket from

a deep mine shaft. The weight of the bucket and its

contents produces a certain unit stress in the rope that is

equal at all sections of the rope.

If P is the weight of the bucket and its contents, and
PA the area of the section of the rope, this stress is S= —,
A.

The sectional area of the rope at any point has to support

the weight of rope below that point, as well as the weight

of the bucket and its contents; therefore the section of

the rope at the upper end being A^ and TFthe weight of

the rope, S=——^ instead of —-.
A A

It is readily seen that if W is small, the value of P + TF

22
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is not sensibly greater than the value of P ; the value of S
P

will not be materially changed from -—

.

A.

In the case where P + TF is much greater than P, and

the ro23e is the same size throughout, it must be large

enough to carry a load of P + TF.

When a long vertical bar of uniform section is under an

axial load, it follows that every section, except one, is

larger than necessary, and if the section area is varied so

that the unit stress in each section is the same, the weight

of .the bar could be reduced. Such a bar is called a Bar

of Uniform Strength. This does not mean that the

strength of the bar is the same at all sections, but that

the change of section area makes the unit stress the same

at all sections, and might better be termed a bar of uni-

form stress, or a uniformly safe bar.

Consider such a vertical bar, length ?, and an axial load

P
P. The smallest possible area, A^^ is given by A= -^i

where S is the allowable unit stress, and design the bar

so that S shall be constant. In Fig. 23, let A^ be the

area at the end where the load is applied, and A be the

area at any distance y from that section. Then at a dis-

tance y + dy the area must be increased to A-\- clA. Let

w equal the weight of a cubic unit of the material

;

then the additional weight to be carried on the area

A + dA is Aw dy^ since the term containing dA dy

can be neglected in comparison to the term containing

only dy. Since S is constant, and this weight is to be

carried on the area dA^

J 4 Aw dy J S dA ^i ^dA = —^, OYdy :=-—-, (1)
o IV A
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gives the relation between the increase of length and the
increase of area. If (1) is integrated,

y = - log, A+ C,
w (2)

Sand since A = A^, when y =0, C= -^\og A..
IV

Substituting this value for C in (2) and transposing,

log, ^ = - y 4-log, A, or logi, ^= 0.434
fy +logioA (3)

is an expression for the relation between the least area and

Fig. 23.

the area at any distance y from that section. In the

application of the formula to a given case, different values
might be assigned to y, and the corresponding values of A
found, enough values being calculated to enable the pro-

file to be drawn. In this case the outline of a vertical

section is slightly curved. If the vertical section is made
trapezoidal, and the bar is a masonry pier, the top of
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the trapezoid is made proportional to Aq, and the base to

the value of A in equation (3), when 7/ is the height

of the pier.

Such a pier would require more material than one of

uniform strength ; but, although the unit stress would be

only approximately equal at all sections, it would repre-

sent common practice.

Art. 24. Thin Pipes, Cylinders, and Spheres.

Take a pipe, internal diameter D, thickness of the pipe

wall t, carrying a water pressure of M lb. / sq. in., to find

Fig. 24 a.

the unit stress in the walls of the pipe. As each unit of

length of the pipe is under the same forces, we may take

the length as unity. Suppose a length of pipe equal to

unity (Fig. 24: a) to be cut by a diametral plane X-X;
then the stresses acting on the pipe walls at the section

cut by the diametral plane must resist the pressure of the

water tending to force the two halves of the pipe apart,

and if ^ is small, the stress may be considered as being

uniformly distributed over the sections of the pipe walls

cut by the diametral plane. Therefore, if we can calcu-

late the value of P, the force tending to separate the two

halves of the pipe, the formula P = AS, where A is the
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area of the section of the pipe walls, will give the required

unit stress.

A principle of hydraulics states that the pressure of

water is the same in all directions and normal to the sur-

face. Let Fig. 24 h represent a half section, perpendic-

ular to the axis of the pipe. If is any angle, then

si

CO

"5

^^
^
^RrdeCosd

Fig. 24 6.

for a length of pipe equal to unity, the radius of the pipe

being r, an area of the internal surface of the pipe, equal

to rdO^ carries a pressure of M, lb. / sq. in., or the total

radial force on that area is RrdO. This force may be

resolved into components, parallel and perpendicular to

the line X-X^ which is the trace of the diametral cuttino*

plane. The components are Rr cos 6d6 and Rr sin 6d6.

The sum of the Rr cos 6d6 forces for one half of the pipe

is zero, and the sum of the Rr sin 6dd forces for the same

half is 2 Rr^ or RD^ which is the force per unit of length

perpendicular to the cutting plane, resulting from the

internal pressure R.

Substituting this value in the general formula P = AS,
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and noting that the area of the section of the pipe walls is

2^, we have ED = 2 St (1)

as a general expression for the unit stress induced in a

longitudinal section of a pipe whose walls are thin. If

the ends of the pipe are closed, the internal pressure of

the water on the ends of the pipe tends to rupture the

pipe in a plane perpendicular to the axis.

The force acting on the ends of the pipe is evidently

7)2 7?—j—, and the area to resist this force is ttDI ; hence a
-±

substitution of these values in P = AS gives HD = 4 St,

showing that the stress in a plane perpendicular to

the axis is only one half that on a plane through the

axis.

For a sphere with thin walls, the water pressure tends

to produce rupture on the line of a great circle. It is

readily seen that the pressures and areas are the same

as for a plane section perpendicular to the axis of a cylin-

der ; hence the same relation holds true.

Akt. 25. Thick Pipes.

If t is large, the stress in a plane through the axis is

no longer uniformly distributed over the area of the sec-

tion, but is greater on the internal radius.

Many formulas have been proposed for finding the

maximum unit stress in this case, the one given here

being due to Barlow. The results are in simple form,

and the value of the maximum unit stress being greater

than that given by the more exact discussions, places the

error on the side of safety.

Barlow's formula assumes that when the fluid pressure

acts on the internal surface of the pipe, while the diameter
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is increased, the volume of the pipe walls for a unit of

length remains unchanged.

If we let D be the internal, and D^ be the external,

diameters of a pipe whose walls are thick (Fig. 25), and

Fig. 25.

the thickness of the pipe walls ^, before the pressure is

applied the volume of a ring one unit in length is

7rZ>2
(1)

Let e and e-^ be the extensions of the diameters due to

the fluid pressure and the volume becomes

f(A + «iy-f(^ + «)'. (2)

Expanding (2), neglecting the e^, as e is a very small

quantity, and equating (1) and (2), the equation reduces

*o B^e^ = Be. (3)
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The unit elongations are — and
-J-,

since the change in

the circumference of the thin shells of diameters D and

D^ are Tre and Tre^ while the original circumferences are

irD and irD^ The unit stresses in the thin shells of the

diameters D and D^, being S and aS'j, as the unit stresses

are proportional to the unit deformations within the elas-

tic limit,

(4)

e

s 'D B^e

Si' ^1

^1

'^'

-Z>i«i = De, hence,

e

and substituting this value of — in (4) gives
H

S _Dl_rl ...

or the unit stresses are inversely proportional to the

squares of the diameters or radii.

Let Sj. be the unit stress at a radius x. Then, from (5),

and the total force exerted over the area dx times 1 is

SJx=:Sr^^- (6)

The integral of the left hand member of (6) is the sum-

mation of all the stresses on one side of the pipe, and is
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equal to one half of the total fluid pressure tending to

rupture the pipe ; hence the total force is

Equation (7) reduces to RD^ = 2 St instead of RD = 2 St

for thin pipes. Formula (7) is the one to use in all

cases where the value of RD^ is enough larger than RD
to cause serious error. The error in Barlow's formula

increases as the internal radius decreases, and for thick

pipes where the diameter is small, the more exact formulas

of Lami and others should be used. (See Merriman's

'^ Treatise on the Mechanics of Materials.")

Art. 26. Riveted Joints.

In the determination of simple stress, such as tension,

P
compression and shear, the formula S= — always gives

A.

the relation between the force P and the unit stress S.

The area A must always be the area over which the stress

is induced, and will, for tensile or compressive stresses, be

a section of the bar perpendicular to the line of action of

the force P, and parallel to the same line for shearing

stresses. If the area of the section of the bar varies for

different cutting planes, the plane that gives the least area

should always be chosen.

When two plates are joined together by means of rivets,

the joint is called a Riveted Joint.

Art. 27. Tension in the Plates.

Let A and B (Fig. 27 a) be two plates joined together

by means of rivets passing through the cover plates a and b.

Let P be the tensile force tending to separate the plates
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^<

B

a

(

)

)

A

V

A and B, w the width

of tlie plates, t the

thickness of the plates

A and B^ t^ the thick-

ness of the plates a and

h^ and d the diameters

of the rivets.

Since P is a tensile

force, and the greatest

number of rivets in

line is two, if we pass

a plane perpendicular

to the line of action of

the force P through

the line of the two

rivets, cutting either

of the plates A or B^

or the cover plates a and 5, the stress which acts in such a

plane to resist separation is the product of the unit stress

induced and the area cut.

The area cut by the plane is either the thickness of the

two cover plates a and h times the width of the plates less

the diameters of the rivets in line, or the thickness of the

plates A ov B into the same quantity. Hence the relation

between the tensile force P and the unit stress induced

in the plates is, 2 t^ (iv — 2d)Si = P, or t{tu — 2 d) Sf = P,

depending on whether the failure is in the plates A or B
or the cover plates a and h.

As there is no reason why one of these sections should

be stronger than the other, 2 ti is generally made equal to

t. Since any other cutting plane would cut a larger area,

the value of S as given in the above formula is the largest

Fig. 27 a.
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value possible with the force P. Figure 27 h shows the

failure by tension in the plates.

B

rcy=^yn

V Fig. 27 6.

Art. 28. Shear on the Rivets.

If the plates do not yield in tension, in order to pull

the plate A away from B^ and the cover plates, the num-

ber of rivets passing through A must be sheared off in

two sections parallel to the line of action of the force P,.

and perpendicular to the axis of the rivets. Therefore

the area to resist shear on the rivets caused by the force

P must be twice the sectional area of each rivet times the

number of rivets passing through the plate A. These

values substituted in the general formula, P = AS give

2 7r(^2
for this joint, 2 x Ss = Ps' (See Fig. 28.)
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Art. 29. Compression on the Rivets or Plates.

Suppose that the plates resisted the ten-

sile stress, and that the rivets, the shearing

stress, the force P acting on J., causes the

plates to bear on the cylindrical surface of

the rivets. The exact effective area of each

rivet, or the plate through which it passes,

is not known ; but it is assumed to be the

projected area of the rivet; that is, the

diameter of the rivet

times the thickness of

the plate through

which it passes. On
this assumption, taking

2 ^j = ^, the area to

resist compression on

each rivet is dt. This

area times the number

of rivets passing through A^ when
substituted in the general formula,

P = AS^ gives for this joint,

2 dtS, = P„

as the relation between the force P
and the unit compressive stress on

the rivets or plates. (See Fig. 29.)

As there is no other way that the

joint can fail, the equation that gives the least value of P
determines the way in which the joint is most liable to fail.

Art. 30. General Case of Riveted Joint.

In general, while the joint may be very long, the rivets

are regularly spaced. In this case, the distance between
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the centers of any two rivets in line is called the " pitch
"

of the rivets, and P is taken as that proportion of the load

on the entire joint that the pitch is of the length; or in

other words, P is the load or force on the joint for a

distance equal to the pitch of the rivets.

Tension in the Plates.

Taking P as above, and letting p be the pitch of the

rivets, the relation between the tensile unit stress in

the solid plate and the force P is,

tpS,=^P, (1)

where, if S is the safe unit stress, P is the safe load.

For all joints in tension, since there can never be but

one rivet in line in the distance p^

tCp-d)S, = P,. (2)

If, as before, S^ is the safe tensile unit stress, P^ is the safe

load when failure is considered as taking place by tension

in the punched plates. If the values of aS'^ are the same

in (1) and (2), it is easily seen that P^ can never equal P,

Shear on the Rivets.

The relation between the load P and the unit shearing

stresses will depend on the nature of the joint. In any

given case, the product of the number of times each rivet

may shear, the number of rivets in the distance jt?, and the

area of the section of the rivet perpendicular to its axis,

will be the area over which the shearing stresses act.

Letting c be the number of rivets times the number of

.sections in the distance j9, then

|ccP.9, = P.. (3)
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When safety of the joint against failure by the shearing

of the rivets is considered, if aS'^ is the safe unit shearing

stress, then Pg is the safe load.

Considering (2) and (3), the values of p and d can be

chosen so that when safe values of the unit stresses aS'^ and

jSs are used, P^ = P^, but they are not necessarily equal.

Compression 07i the Rivets or Plates.

Taking aS^^ as the safe unit stress in compression, and

td times the number of rivets in the distance p as the area

resisting compression, and letting c^ be the number of

"•i^'^t"'
e,tdS, = P, (4)

is the relation between the unit stress in compression and

the load P^. As before, P^ may have different values

from either Pf or P^, but if they are assumed to be equal,

and safe values of aS^, aS'^, and aS^^ are used in equations (2),

(3), (4), as there are three equations and three variable

quantities,
J9, ^, and d can always be determined.

If the values of p, ^, and d are found in this manner,

the joint will be equally safe against failure in all ways.

In general, the equation which gives the least value of P
will show the way in which failure is most liable to occur.

Art. 31. Kinds of Riveted Joints.

Lap Joints. Here the two plates to be joined together

lap by each other and the rivets pass through both plates.

The rivets tend to shear on but one section, and are said

to be in "single shear."

Butt Joints with Single Cover Plates. Here the plates

are both in the same plane, and the joint between them is

covered by a plate of the same thickness as the plates.

Any rivet passes through the cover plate and one of the
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Double riveted lap joint.

Double riveted butt joint with

single cover plate.

1

i

1^

Triple riveted lap joint.

Double riveted butt joint with double cover plates.

Fig. 31.
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plates that are to be joined together. The conditions for

shear and compression are evidently the same as for lap

joints.

Butt Joints with Double Cover Plates. In this kind of

a joint the plates are in the same plane, and the cover

plates, each one half the thickness of the plates to be

joined, are placed on either side of the joint. Any rivet

passes through both cover plates and one of the plates that

are to be joined.

An inspection of the figure will show that each rivet is

liable to be sheared in two sections and is said to be in

" double shear," while the conditions for compression are

the same as for the one with single cover plates.

Either type of a joint may have one or more rows of

rivets, and the pitch in all rows is generally the same.

The joint is said to be Single^ Double^ or Triple riveted, as

there are one, two, or three rows of rivets. The figures

show the details of the various joints and styles of riveting.

It is evident that if lines are drawn passing through any

two adjacent rivets in the same row, and parallel to the

line of action of P, the rivets included between these lines

will be the number of rivets that are to be considered as

resisting the shear and compression.

Art. 32. Efficiency of a Riveted Joint.

When P;, P5, and P^ are the maximum safe loads a

riveted joint will carry, the efficiency of that joint may be

defined as the ratio of the least of the above values, to the

load the unpunched plate of the same length will carry

under the same conditions.

From this definition it is evident that the efficiency of

any joint is P^, P^, or P^, divided by P, depending on the
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relative values of P^, P^, and P^. Of all the ways in

which a riveted joint may fail, the failure by compression

of the rivets or plates is the least understood, and many
engineers design the joint for equal strength in tension

and shear, and simply check the resulting dimensions for

the compressive stress. This practice has resulted in the

efficiency of a riveted joint being given as •, but this

P
is only approximately true unless P^= P^ = P^.

In general, when the values of t and d are calculated,

the nearest commercial sizes have to be chosen, and the

values of P^, P^, and P^ are rarely ever equal.

In many cases the pitch is fixed by the conditions for

the tightness of the joint against leakage, as for boilers,

tanks, and pipes, and in such cases only two conditions

can be satisfied.

In the development of the preceding formula no account

has been taken of the friction that must exist between the

plates through which the rivets must pass.

As there is no good theoretical way of introducing the

resistances due to friction in the formulas for strength,

riveted joints have been pulled apart in testing machines,

and the accuracy of the formulas checked by the breaking

load as determined by the test. While the results in

many cases seem to show that the theory that has been

given here does not hold true, the conditions that are con-

current with the rupturing load not being the same as when

all the stresses are within the elastic limit, there seems to

be no good reason why the formulas as developed will not

give reliable results.

In the design of a riveted joint for a pipe or a boiler to

carry a pressure of R lb. /sq. in., as one half of the
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internal pressure tending to disrupt the pipe or boiler

is carried on one joint of the shell the value of P to be

used in the formulas is one half of the total pressure

acting over a length p^ or, ——^ = P.

Art. 33. Stresses Due to Change of Temperature.

All metals tend to change in length as their temperature

changes. If the change is resisted, that resistance must

cause a stress in the material.

Consider a bar I units in length, A units in area, free

to change its length as the temperature changes. If the

change in length due to a given change of temperature is

g, and a force is exerted to restore the bar to its original

length, the unit stress induced by that force will be given

e

Therefore if a force prevents the change from taking

place, it must induce an equal unit stress, and this unit

stress is independent of the area of the bar. Knowing

the change in unit of length for a change of 1° of tem-

perature, or the coefficient of linear expansion, the unit

stress in any bar corresponding to any change of tem-

perature may be found provided the unit stress is within

the elastic limit of the material.

If the bar is under an initial unit stress before the

change of temperature, the change will increase or de-

crease that stress, depending on the nature of the initial

and temperature stresses.
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PROBLEMS

1. How long will a bar of wood have to be, in order

that its own weight will produce a unit stress of 300 lb./

sq. in. ? The bar is hanging vertically.

Solution. Taking the weight of a bar of wood, 1 sq. in. in sec-

tion and 3 ft. long, as ^§ lb., the bar will have to be as long as 300

divided by ^f, equal 360 yd. Ans.

2. What is the length of a vertical steel bar a square

inch in area, that carries a tensile load of 40,000 lb., at

the lower end when the maximum unit stress is 15,000

Ib./sq. in. ?

3. Find the probable elongation in problem l.

Solution. Since the maximum unit stress is 300 lb. / sq. in. and

the minimum 0, the average unit stress must be 150 lb. / sq. in.,

and we have given that E = '^-,

e

1,500,000 = 150 X 360 x 36^ .^ ^ ^ ^296 in.
e

4. Find the total elongation in problem 2.

(Total elongation is that due to the load and its own weight.)

5. Find the height of a brick chimney of uniform

section, when the maximum compressive unit stress is 18

tons /sq. ft.

6. Suppose that the sectional area of the base of a

chimney was twice that at the top, and that the change in

area was uniform, how high could the chimney be built if

the limiting value of the unit stress was 18 tons /sq. ft. ?

7. Find the areas of the top and bottom section of a

stone pier, 100 ft. high, to carry a load of 240 tons, the

unit stress in all sections to be constant.

8. If the pier in problem 7 had the top and bottom

areas as found and the vertical section was trapezoidal,

find the unit stress at the bottom of the pier.
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9. The wire rope used for hoisting in a certain mine is

1^ in. in diameter, and weighs 2.5 lb. /ft. If the mine

is 800 ft. deep and the safe working load for the rope is

5^ tons, what weight may be raised ?

10. A pipe 6 in. in diameter is to carry water under a

pressure of 1000 Ib./sq. in., with a factor of safety of

6; required the thickness of the pipe w^alls.

11. A standard 2-inch steel pipe is 2.375 in. outside

diameter and 2.067 inside. This size is tested under a

pressure of 500 Ib./sq. in.; required the unit stress in

the pipe walls.

12. A steel pipe 10 in. in diameter is to carry water

under 2770 ft. head. The factor of safety is to be 10.

Find the thickness of the pipe.

(A column of water 1 ft. high and 1 sq. in. in area weighs .431 lb.)

13. Check the results in problem 12 by Barlow's for-

mula and find the unit stress.

14. Compare the maximum unit stress in the pipe of

problem 11, as determined by the formulas for thick and

thin pipes.

15. Write the formulas for determining the strength of

the following riveted joints in tension, compression, and

shear. The pitch is p^ the thickness of the plates f, diam-

eter of the rivets d, and the safe unit stresses in tension,

compression, and shear are Sf, >S'g, and S^.

(a) Single riveted lap joint.

(5) Double riveted lap joint.

(c?) Single riveted butt joint with one cover plate.

(d) Double riveted butt joint with one cover plate.

(e) Single riveted butt joint with two cover plates.

(/) Double riveted butt joint with two cover plates.

(^) Triple riveted butt joint with two cover plates.
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Solution for (a).

If Pt is a tensile force acting on the joint for a distance equal to

the pitch, then since P = AS, and the area to resist the tensile

stress is t{p — d), Pt = t(p — d)St gives the relation between the

load and the unit tensile stress.

Let Pc be the tensile force that brings compression on the rivets.

As there is but one rivet in the distance j>, the area to resist compres-

sion is id, and since P = AS, Pc = tdSc is the relation between the

load and the compressive unit stress, and if Pg is the tensile force that

produces shear on the rivets, as there is only one rivet in the distance

p, and it can shear in but one section, SiS P = AS, Pg = Sg is the

relation between the load and the unit stress in shear.

16. If the values of P^, P^^ and P^, in each of the dif-

ferent joints given in problem 15 are taken as being equal,

find the expressions for the values of p and c?, in terms of

t, and the efficiency of each joint.

Solution for (a). ,o _7TfP ^

ttSs

and t(p -d)St = tdSc,

^ d(S, + S,)
^

St

Substituting the value of d,

^ ^ 4 >Se t(Sc + St)
^

TT Sg St

and since the expression for the efficiency when the strength of the

joint is equal against all kinds of stress is ^
~—

-, substituting for

these their values as found, their efficiency is

Sc -}- St

17. A steam boiler, 60 in. in diameter, carrying 120

Ib./sq. in., is to have the longitudinal seams double riv-

eted butt joints with two cover plates. Take S^ = 12,000

Ib./sq. in., aS'^ = 10,000 Ib./sq. in., and make the joint

equally safe against failure by either tension or shear. If
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the efficiency is to be either approximately 75 %, required

the thickness of the plates, the diameter, and pitch of the

rivets.

Solution. The thickness of the plate is given by RD = .75 • 2 St

as the unit stress in the unpunched part of the plates can be only

75 % of the allowable unit stress, or,

120 X 60 = .75 X 2 X 12,000 t

^
^ 120 X 60 ^

Q ^
.75 X 2 X 12,000

and the expression for the efficiency in tension being efficiency

^^^^=.75,
P
p = 4:d.

Take y'g as the nearest market size for the required thickness of the

plate, for equal strength,

t(p-d)St = 2 X 2 x^'^,,
4

^\ (4:d - </)12,000 = 7rf/2 X 10,000,

d = \" approximately;

then ^ = xV', c?i=i", andj9 = 2".

18. In problem 17, taking the values j9, ^, and d as

found, what must be the value of the unit stress in com-

pression, in order that the joint will be equally safe

against failure by tension, compression, or shear ?

19. A boiler, 30 in. in diameter, has double riveted lap

joints, plates |- in. thick, rivets |- in. diameter, pitch of

the rivets 2.5 in. Taking Sf as 60,000 Ib./sq. in., find

the pressure per square inch that may be carried with a

factor of safety of 6, considering failure by tension of the

plates alone.

20. What are the values of aS'^ and S^^ and the efficiency

of the joint, in problem 19?

21. A triple riveted butt joint with two equal cover

plates is to have an efficiency of 80 %. Using S^ = 10,000
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lb. / sq. in. as the safe unit stress in tension, what will be

the values of S^ and /S'^, when the joint is equally safe

against failure by tension, compression, or shear ?

22. If *S', is taken as 10,000 Ib./sq. in., and S^ as 15,000

lb. /sq. in., what is the highest possible efficiency of a

double riveted lap joint, designed for equal strength

against tension, compression, and shear ?

23. A steam boiler with double riveted lap joints is

to carry 125 lb. /sq. in. pressure. The allowable tensile

unit stress is 10,000 lb. / sq. in. The j^lates are f in.

thick, rivets 1 in. diameter, and the pitch 3J in. What
will be the largest possible diameter of the boiler ?

24. Compare the values of aS';, S^^ and S^ in problem

23.

25. A 30-foot steel railroad rail undergoes a change of

temperature of 100° . If the change in length is pre-

vented, what unit stress will be set up in the rail ?

Solution. The coefficient of linear expansion for steel is .0000065

per degree ; hence the unit elongation for 100° is .00065 in.,

and since

S = Ee,

S = 30,000,000 X .00065 = 19,500 lb. / sq. in.

26. For electric railway work, the steel rails are often

welded together. Assuming that there is no change of

length, what is the maximum range of temperature allow-

able if the unit stress is not to be greater than the elastic

limit?

27. The walls of a building had bulged out, and to pull

them into place, five steel rods each two sq. in. in area

were passed through from one wall to the other. The

temperature was then raised 100° and the nuts on the

rods tightened, so that the load on each bolt was 1000

lb. When the rods are at the original temperature, what

is the maximum pull they could exert on the walls ?



APPLICATIONS 45

28. At St. Louis, Mo., a battery of steam boilers was

connected together by a pipe in which there was no pro-

vision made for expansion. The temperature of the

steam was about 360° F. and that of the room, 100°.

Assuming that there was no change in length, what was

the maximum unit stress in the pipe due to the change of

temperature ?

(«) Material of the pipe steel ?

(^) Material of the pipe cast iron ?



CHAPTER III

BEAMS

Art. 34. Kinds of Beams.

When a bar is placed in a horizontal position, and acted

on by forces perpendicular to the axis of the bar, it is

called a Beam.

[

1m
Cantilever Beam.

Fig. 2Aa.

Cantilever Beam.

Fig. 346.

w

^fl, R, \
Simple Beam.

Fig. 34 c.

Continuous Beam.

Fig. 34 d.

î^4

If the beam has two supports on which it merely rests,

it is called a Simple Beam.

A cantilever beam has only one support, which is at the

middle, or, what is the same thing, has one end firmly

fixed in the wall, leaving the other end free.

When a beam has both ends firmly fixed in the walls,

or one end fixed and the other merely supported, it is

called a Fixed or Restrai7ied Beam.

A beam supported at more than two places is called a

Continuous Beam.

46
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Akt. 35. Reactions at the Supports.

The reactions at the supports are the forces acting

between the supporting walls and the beam, and so far as

the beam is concerned, they may be treated as vertical

forces acting upward.

Art. 36. Uniform and Concentrated Loads.

The loads on a beam are the Aveights that the beam

carries, and since the attraction of gravity always acts

downward, they may be represented as vertical forces.

When the load is distributed uniformly over the entire

length of the beam so that each element of the length

of the beam carries the same load, the load is said to be a

Uniform Load.

When a load is carried on so small a portion of tlie length

of the beam that the effect of the weight acting as it does

over that small portion may be assumed to have the same

effect as a single force acting at the center of the load, it is

called a Concentrated Load.

Since a simple or cantilever beam under any loads may
be considered as a body acted on by forces which keep it

at rest, the laws relating to the equilibrium of forces must

be satisfied.

In general, all the forces, loads and reactions, will be

vertical, and the magnitude and position of the loads will

be known, so that the magnitude of the reactions may be

determined by applying the laws relating to the equilibrium

of parallel forces.

These laws are:

The algebraic sum of all the forces equals zero, and

the algebraic sum of the moments of all the forces about

any point equals zero.
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These two equations are sufficient to determine the

reactions for simple and cantilever beams, as there are not

more than two quantities to be determined.

For all other beams another condition is derived by the

use of the theory of the Elastic Curve. (See Chapter IV.)

The length of a simple beam is the distance between

the supporting walls and the distance the beam projects

beyond the wall for a cantilever beam.

While in any case the beam must rest on the supporting

wall for a finite distance, the point of application of the

single force that is to replace the resultant of the forces

acting between the beam and the wall is taken at the edge

of the wall beyond wdiich the beam projects.

Let Fig. 36 represent
^>--^-^^:

A--I

i W

Fig. 36.

-h- W91

a simple beam, length Z,

weight Tf, carrying two

concentrated loads Pj and

P2 at distances p^ and jt?2

from the right reaction,

and the values of the reactions R^ and R2 are required.

The weight W may be considered as a uniform load,

and for equilibrium.

R, + R2-Pi-P2- ^= 0. (1)

Taking moments about a point in the line of action of

R2, and giving the moment a positive sign when it tends

to produce clockwise rotation.

RJ^R^O - F,p, - F2P2 - -^ = 0. (2)

The term containing R2 is zero, therefore Ri may be

found, and by substituting for R^ in equation (1), R2 may
also be determined.
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R^ may also be found by taking moments about a point in

the line of action of j^i, and this value used as a check.

If the weight of the beam, TF5 included both the weight

of the beam and a uniform load, the equations would have

been the same.

Art. 37. Vertical Shear.

Let Fig. 37 a represent a simple beam, loaded with both

uniform and concentrated loads, and Fig. 37 5 a cantilever

beam with the same loading.

Suppose either beam to be cut by a plane X-X perpen-

dicular to the axis of the beam, at any distance x from the

X

-X

Ri
Fig. 37 a.

R1
Fig. 37 &.

left end of the beam, and consider the end marked U. This

end is acted on by known forces, since, when the loads are

known, the reactions can be found, and relative to the end

marked F, these forces tend to produce translation either

up or down, the magnitude of the resultant force being

the algebraic sum of all the forces acting on the part JEJ.

Similarly, considering the part marked F, the resultant

of all the forces acting on F tends to produce translation

relative to F, and these two resultants being equivalent

to all the forces acting on the beam, must be equal and

opposite in sign, since the beam is in equilibrium.

These two resultants are a pair of shearing forces, and

either one is the force producing shear in the plane X—X^
and if we wish to call one of these forces the Vertical
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Shear at the section X-X^ it will be necessary to define

vertical shear so that the sign will be determined as

well as the magnitude.

The vertical shear at any section of a beam is defined

as follows

:

The Vertical Shear for any section of a beam is the

algebraic sum of all the forces acting on that portion of

the beam, lying to the left of that section.

When the resultant force acts upward, the vertical

shear is considered positive, and negative when it acts

downward.

Art. 38. Bending Moment.

If we take the sum of the moments of all the forces

that act on the right and also those that act to the left

of the section X-X (Figs. 37 a and 37 5) about a point in

that section, the resulting moments must be equal and

opposite in sign, and as either is a measure of the tend-

ency of rotation to take place about a point in the plane

X-X^ they are the bending moments for that section.

In order to fully determine the bending moment both

as to sign and magnitude, it is defined as follows

:

The Bending Moment at any section of a beam is the

algebraic sum of the moments of all the forces, acting on

that portion of the beam lying to the left of the section,

moments being taken about a point in that section.*

It is considered positive when the moment tends to

produce clockwise motion and negative for counterclock-

wise motion. The "section of the beam" as used in the

definition of both vertical shear and bending moment

* A cantilever beam is always considered as being fixed at the right

end, leaving the left end free. If the beam projects toward the right,

look at it from the other side.
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refers to any plane section perpendicular to the axis of

the beam, and the " forces acting to the left of the sec-

tion " includes both the loads and reactions whose points

of ap23lication are on the left of the section.

Art. 39. Resisting Shear.

Since the part of the beam on the left of the section

X-X (Figs. 37 a and 37 5) is acted on by external forces,

and as a part of the whole beam it is in equilibrium, there

must be internal forces acting in the section X—X^ which

taken with the external forces acting to the left of the

section, constitute a system of forces in equilibrium.

Suppose these unknown forces to be resolved into their

horizontal and vertical components. Then, since equi-

librium exists, the algebraic sum of the vertical compo-

nents of the internal forces must equal the sum of the

vertical forces, and since the external forces have no

horizontal components, the sum of the horizontal compo-

nents of the internal forces must be zero, and also, tlie

algebraic sum of the moments of the external forces must

equal the sum of the moments of the internal forces, mo-

ments being taken about a point in the section X-X.
From the first condition, if we give the name of Resist-

ing Shear to the sum of the vertical components of the

internal forces.

The Vertical Shear = the Resisting Shear^

and assuming the shearing forces to be uniformly dis-

tributed over the area of the section, then

r= AS, (3)

where A is the area of the section and S is the unit shear-

ing stress, and I^the vertical shear for the section.
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Art. 40. Resisting Moment.

From the second condition, since the horizontal com-

ponents of the internal forces must be either tensile or

compressive forces, the sum of the tensile Forces = the

sum of the compressive Forces.

Giving the name of Resisting Moment to the moments

of the internal forces about a point in the section, the

third condition for equilibrium states that,

The Bending Moment = the Resisting Moment.

The relation between the bending moment of the exter-

nal forces and the unit stresses in the section considered,

cannot be found by the laws of mechanics alone, as the

distribution of the internal forces is unknown. The in-

formation necessary may be derived from the results of

experimental observations on beams while under the

action of bending forces.

When a beam is under the action of bending forces, it

is observed that along the concave surface of the beam

the fibers * of the beam are shortened, while those on

the convex surface are lengthened, and that along a

certain plane section of the beam there is no change in

length.

We know that a compressive force shortens, and that a

tensile force lengthens, any bar on which it acts, and that

where there is no deformation there can be no force act-

ing ; therefore the stress on the concave surface must be

compression, and that on the convex surface, a tensile

* The word "fiber" as used here may be defined as a bar of elemen-

tary sectional area and a length equal to that of the beam, the whole

beam being composed of a bundle of such fibers. It is not necessary

that the beam should be of a fibrous material in order that this conception

should be true.
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stress, while at the certain plane, called the Neutral Sur-

face, there is no stress of any kind.

When the loads were such that there was no unit stress

greater than the elastic limit, it was observed that the

deformation of any fiber was proportional to its distance

from the neutral surface.

If we call the trace of this neutral plane on any plane

section of the beam perpendicular to the axis, the Neutral

Axis of the section, since there is no unit stress greater

than the elastic limit, it is evident that the unit stress at

any point in that section, and consequently the forces pro-

ducing that unit stress, must vary directly as the distance

from the neutral axis. This assumes that U is constant,

since U =—, and when the location of the axis is known,
e

the unit stress at any point may be found.

Let Fig. 40 represent any cross section perpendicular to

the axis of the beam, and the line X-X the neutral axis.

From the experimental observations we know that the

greatest unit stress must be at the

greatest distance from the neutral

axis ; and letting c be the distance

from the neutral axis to the fiber

most distant from that axis, A the

area of the section, dA the area of ^^' *^'

any fiber, y the distance of that fiber from the neutral axis,

and S the unit stress at a distance c from the neutral axis,

then since the force varies as the distance from this neu-

tral axis, the force at any distance «/, acting on the area of

any elementary fiber dA is —ydA, and — I ydA is the sum-

mation of the horizontal forces acting on the whole section.
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From the conditions of the problem, this sum is equal

to zero, and as neither aS' or c can be zero, I ydA must be

zero.

If we assume the density to be constant, this is the con-

dition where the axis of moments passes through the cen-

ter of gravity of the section ; hence the neutral axis

passes through the center of gravity of the section. The

force on any fiber being —ydA^ the moment of this force
c

S
about the neutral axis is — y'^dA^ and the sum of the mo-

e

ments of these forces about a point in the section is

— I y'^^dAy which is the Resisting Moment by definition.

The iy'^dA is defined in mechanics as the moment of in-

ertia of the section about a gravity axis, and is repre-

sented by the symbol I.

Therefore, since the Bending Moment = the Resisting

Moment, ^jM = —, 00
c

In this formula il^f is the bending moment of the exter-

nal forces that act on the left of any section, 7" the moment

of inertia of the section about a gravity axis perpendicu-

lar to the direction of bending, c the greatest distance of

any fiber from the neutral axis, while S is the maximum
unit stress in that section.

The formula expresses the relation between the bend-

ing moment and the unit stress in the section, and if the

maximum unit stress in a beam is desired, 31 must be the

maximum bending moment for that beam under the given

loads.
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As an aid to memory, attention is called to the simi-

larity between this expression and the one derived for

axial stress.

P and M are the external forces, S in each case is the

unit stress induced; and as - depends on the shape and
c

area of the section for its value, it may be considered as

replacing A in the formula for axial stress.

Art. 41. Use of Formula.

In the derivation of the formula for axial stress, there

was no consideration taken of the intensity of the stress

^ or of the nature of the material, the formula holding true

for all unit stresses and materials. When the formula

McS = —- was derived, certain conditions were specified.

They are

:

(1) The material was to be elastic, and since we assumed

that the forces were proportional to the deformations, the

modulus of elasticity must also be constant.

(2) In order for I t/^dA to be the sum of the moments

of the differential areas about the gravity axis, the material

of the beam must have a uniform density.

(3) No unit stress to be greater than the elastic limit.

If the material and loading of a beam does not satisfy

Tl'T"

these three conditions, the formula S = —- will not give

the true unit stresses.

The Modulus of Rupture is the value of ^S' as derived

from aS' = -—, when M is large enough to rupture the

beam. Since the formula only holds true for unit stresses

within the elastic limit, the value of the modulus of rup-
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ture as an engineering constant is at least doubtful. In

testing cast iron bars in bending, the breaking load at the

center, which is of course proportional to the modulus of

rupture, is taken as a measure of the quality of the material.

The results of such tests are useful for comparison only

when the tests are made on bars of the same length and

size.

The formula S = ——, expressing as it does the relation

between the bending moment and the unit stress in a

beam, is used in all calculations for the strength, safety,

and design of beams. When sufficient data are given to

fully determine the value of M^ the value of either S or

— may be found.
^

I
The value of - depends on the form and area of the sec-

c

tion, and is called the Section Modulus.
Mc

In the application of the formula S = -— to any given

case, the question of units becomes one of great importance.

It does not make any difference in the effect of J/,

whether it is expressed in inch pounds, or foot pounds;

but as S is the unit stress and is usually given in pounds/

square inch, the value of M must be expressed in inch

pounds and c and I in. inches, in order to get correct results.

The ton could just as well be used as the unit of weight

and the foot as a unit of length, but such practice w^ould

require a special table of the constants of materials, the one

given in the Appendix being based on the pound and inch.

As there are many different sections that have the same

section modulus, the designer is called on to choose a form

of section best suited to the conditions that exist in the

case in hand.
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The value of I for a rectangular section, breadth 5, and

depth d^ about an axis through the center of gravity

hd^ d
parallel to the side 6, is -zr^i and c is -.

Substituting these values in tlie gen-

3Ie
eral formula S = -— gives the value

of i!f as
Sbd^

I

Therefore, when the section is rec-

tangular we see that the value of M
for any given value of S increases

directly as b and as d^^ and any in-

crease in the value of d increases the

strength more than a proportional in- -

crease in the value of ^, while the

weight of the beam will be the same

for either case.

w

-2j02

d

Z. 61
WT. 29.3 TO 34.6 LBS.

\^ 1
-2-4f

"TN

^O

Fig. 41 a.

A practical limit of the ratio of t is about 6.

From the known condition

that the unit stress in any point

in the section varies as the dis-

tance from the neutral axis, it

is evident that the form of sec-

tion which presents the great-

est area where the unit stresses

are large and a minimum area

^' ^''^ where they are small will be

the best from an economic

Fig. 41 6. standpoint.

The common steel I beam, so called from the form of the

section, is an example of this distribution of area. There

<%->

Kl%

-3J/,-
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^T. 97
WT. 9.3 LBSy

3.1/2'^^

is always a maximum vertical shear to be resisted in all

beams, and care should be taken that the area of the sec-

tion chosen is large enough to resist

-.'I'the shearing forces. In most cases if

the beam is safe against the bending

forces, it will be safe against the

shearing forces, but the

unit shearing stress

should always be inves-

tigated before the final

decision is made as toFig. 41c.

the size of a beam.

The hollow box or cored sections in cast

iron machine parts subjected to bending

forces represent the best practice on account

of the large value of I relative to the weight.

Plate girders", made"W

- .^

01 JO

01 Oz

-1-1

Fig. 41cZ.

7by riveting angle

JL. irons to a steel plate

Plate Girder. Called the web, making a beam
Fig. 41 e. whose section resembles that of the

common I beam, are in common use in structural steel

construction.

Art. 42. Shear and Moment Diagrams.

If a line which may be either straight, curved, or

broken be drawn so that the ordinate to that line from

any point of a straight line representing the length of the

beam equals the vertical shear or bending moment for that

section of the beam, the resulting diagram is called a Shear

or Moment Diagram^ depending on whether the vertical

shears or the bending moments are used as ordinates.*

* This line will be called the shear or moment line.
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To draw either diagram, the shears or moments for

each unit of length of the beam might be calculated and

the results plotted to scale, using as ordinates the values

of the moments or shears and as abscissa the distances of

the sections from the left end of the beam. A line

through the points so located would be the shear or

moment line, as the case might be.

This is a tedious process and may be shortened by a

study of the effect of the different kinds of loads on the

form of the shear or moment line.

Art. 43. Shear Diagram.

For a concentrated load, the difference between the

shears for sections taken just to the right and left of the

point of application of the load is the magnitude of that

load, since in the former case the " negative forces acting

to the left of the section " are increased by the magnitude

of the load over those for a section taken just to the left of

the load. Therefore, the shear line will always contain

a line perpendicular to the length of the beam under each

concentrated load.

When only concentrated loads are considered, the shear

line between any two concentrated loads will be a straight

line parallel to the length of the beam, since there is no

change in the forces acting to the left of any section

taken between the two loads.

For uniform loads of w pounds per linear unit, the

shear line will be a straight line inclined toward the

right, as the resultant force on the beam due to the uni-

form load is decreased by ivx^ where x is the distance of

the section from the left end.

If there are concentrated loads as well as uniform loads,
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the shear line will be straight and vertical under the

loads and inclined between the concentrated loads.

To apply these principles, let Fig. 43 represent a

simple beam, carrying two concentrated loads, P^ and P^,

and a uniform load of w pounds per linear unit.

Remembering the definition of vertical shear, it is

easily noted that the shear at the left end is equal to

the left reaction R^ which is plotted as AG. The shear

between the left end and P^ is R^ — ivx, where x is the

distance of the section considered from the left end.

For a section distant j?^ from the left end, taken just

to the left of P^, the shear is less than the shear to the

left end by wp-^, and the ordinate to the line AB at any

point will be the vertical shear

for that section. For a section

just to the right of P^ the

equation of the shear has

become R^ — wx — P^, as the

two sections taken to the right

and left of P^ are considered so

close together that the uniform

load has not increased. The

shear line will therefore drop

to (7 on a vertical line through

the point of application of P^.

Between P^ and P^ the shear will decrease at the same

rate as between R^ and P^ since the load increases di-

rectly as the distance and CB will be parallel to AB.

Then comes the drop due to P^, and UF is parallel to AB
and CJ). FO must be the value of the right reaction,

since the sum of the vertical forces must be equal to zero.

It is evident that the consideration of more concen-

FiG. 43.
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trated loads would simply extend the diagram in a similar

manner, and also, if the magnitude of the uniform load per

unit of length should change at any point, the inclination

of the shear line would also change at the same point.

Art. 44. Moment Diagrams.

The general equation of the bending moment for any

section of a beam may be written from its definition.

For a section of a beam distant x from the left end, the

moment of the left reaction R^ about a point in that sec-

tion is R^x^ and the moment of the uniform load on the

left of the section about a point in that section is the

X • 1VX
arm - times wx^ or —— , hence,

2 2

2 ftlie sura of the moments of the loads]

3^= R^X — — < that act to the left of the section I

"^ [about a point in that section.
J

If there are no concentrated loads, the term containinsr

the sum of the moments, etc., is zero, and for a cantilever

beam the term containing the reaction R^ is zero, since

there is no left reaction.

In some cases the supports of a beam are not at the ends,

and in that case the moment of the left reaction would be

R^(^x—the distance of the reaction from the left end).

When there are uniform loads on the beam, the above

equation shows that M varies with x^^ hence the moment

line will be a curve.

If there are no concentrated loads, the equation of the

curve will be the same at all sections, being a parabola

whose equation is
at _ j?

_w^

When there are concentrated loads in connection with

the uniform load, the form of the equation changes at each
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concentrated load, and the moment line, while still j)ara-

bolic in form, has a different equation between each pair

of concentrated loads.

If only concentrated loads are considered, the equation

of the bending moment is

{the sum of the moments of the loads acting!

to the left of the section about a point in I

that section.
J

If 2:j is the distance from P^ of any section of a beam

taken between any two concentrated loads P^ and P^, the

moment of P^ about a point in that section is PiX^ It is

evident that the equation of the bending moment for any

section will be changed by the addition of PiX^ the instant

the section is taken to the right of P^ and as at that point

x-^ is very small there will be no abrupt change in the value

of the bending moment as the section passes under P^. As

the value of ilf depends on the first power of x^ it is evident

that the form of the equation is that of a straight line.

Therefore, wdien only concentrated loads are considered

the moment line will consist of a series of straight lines

whose inclination changes at each concentrated load. If

the loads are all concentrated, the bending moments may
be calculated for sections under the loads and plotted to

scale. Joining the points so plotted by straight lines

will accurately determine the form of the moment line.

If uniform loads are to be considered, the moment line be-

tween any two loads being a parabola, the bending

moments for enough sections between any two loads must

be found to enable the curve to be drawn (Fig. 43).

The value of M'\n the general equation for the bending

moment is zero when x is zero, hence 3/ is zero at the left

end. The moments of all the forces about any point being
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zero, M must also be zero at the right end. That this

is true for simple beams is so apparent that no proof is

needed. In the case of cantilever beams with the right

end fixed in the wall, if we remember that such a beam is

but one half of a beam supported at the middle and that

the right end of such a beam is, strictly speaking, the

middle, the truth of the statement is evident.

Therefore the moment diagram will be a closed figure

in all cases.

Akt. 45. The Relation between the Vertical Shear and

the Maximum bending Moment.

Writing the general equation of the bending moment

M=R^x-'^-P^ix-p,)-P^{x-p^) . . .P„(x~p„-)

where Pi P2 - - • Pn ^^^ ^^ ^^^ tlie distances of the loads

and section from the left end of the beam and the loads

J^j, P^^ ' • • i^„ act on the beam to the left of the section.

The value of x which makes 31 11 maximum is the value

that renders ~^— = or

dx ^ 12
The right hand member of the last equation is the ex-

pression for the vertical shear for any section of a beam,

therefore the value of x which makes the vertical shear zero

renders the bending moment a maximum.

As the equation for M was a general one and will apply

to all kinds of beams and loadings, the results are true

for all cases.

The section of a beam where the bending moment is

maximum is called the Dangerous Section^ and the prob-
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lem of finding tliis section is simply one of finding where

tlie vertical shear passes through zero.

Drawing the shear diagram, if the shear passes through

zero under a concentrated load, the dangerous section

is determined at once. When the shear becomes zero

between two concentrated loads, the general equation for

the vertical shear may be written for that part of the

beam and equated to zero.

The value of x which satisfies this equation determines

the dangerous section.

Having found the dangerous section, the bending

moment may be calculated for that section, and when this

value of M\^ substituted in the formula M=— , the value
c

of aS' will be the maximum unit stress in the beam.

Art. 46. Relative Strengths of Simple and Cantilever

Beams.

Let the uniform load on either kind of a beam be ^y

and a single concentrated load at the middle of a simple

beam or at the end of a cantilever beam also be W\ then

if a be some number whose value depends on the kind of

a beam and the way in which it is loaded, the maximum

bending moment for the beam may be expressed as
a

OJ
This value substituted in the general formula M= —

,

c

gives = -— , which may be written W=—— . The
a c cl

strength of a beam may be defined as the weight it will

carry with a given unit stress. From the above equation

for W it is evident that the weight a beam will carry with

a given unit stress depends on the value of a, hence the
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relative strengths of simple and cantilever beams loaded

as above are directly proportional to «. If the expres-

sions for the maximum bending moments in simple and

cantilever beams loaded with W as above are written, an

inspection of the results will show that for

a cantilever beam loaded with W-dt the end a = 1,

a cantilever beam loaded uniformly with W « = 2,

a simple beam loaded with TFat the middle «= 4,

a simple beam loaded uniformly with W «= 8.

Art. 47. Overhanging Beams.

Beams that overhang the supports are called Overhang-

ing Beams. The fact that the reactions do not have their

points of application at the ends of the beam does not

prevent the application of the laws of mechanics to the de-

termination of the magnitude of two reactions. Consider

a beam that overhangs one or both supports and loaded in

any way. Taking moments about a point in the line of

action of one of the reactions as R^^ the moment of R^ —
the moments of the loads on the left of R^ + the moment

of the loads on the right of R^ = 0, and as the sum of all

the forces is zero, R^ -{- R^ = the sum of all the loads.

These two equations will suffice to fully determine the

reactions R^ and R^ when the magnitude and position

of the loads are known.

The shear and moment diagrams can be drawn by the

same principles that were applied to simple and cantilever

beams.

In general, the vertical shear will pass through zero

at two or more points, giving more than one value of x

for which the bending moment is a maximum. The value

of the bending moment at each of these points must be
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calculated in order to find tlie greatest bending moment

in the beam.

The maximum moments may be either positive or

negative, but when using the greatest value of M in the

formula 31=—, the substitution is to be made without
c

regard to sign.

As the sign of the bending moment changes from posi-

tive to negative, its value must pass through zero, and the

position of tlie section of a beam for which the bending

moment is zero is called an Inflection Point. The position

of an inflection point may be approximately located by an

inspection of the shear or moment diagrams and the general

expression for the bending moment for that part of the

beam written.

Equating this expression to zero gives the position of

the inflection point accurately.

Art. 48. Beams of Uniform Strength.

When the maximum unit stress in all sections of a beam

is constant, the beam is said to be one of Unifoj^m Strength.

The beams so far discussed have all had uniform sections,

and the value of - was the same for all sections.
c

The bending moment iKf varies for all sections, and if S
T ST

is to be constant, - must vary with iHf, since 31 = For
c c

any beam loaded in any way the bending moment for a

section at any distance from the left end may be expressed

in terms of a variable distance x and this expression

equated to—
c

Assigning different values to x^ the corresponding values
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of - may be determined and the section of the beam at that
'

. I
point chosen to satisfy the value of - as found above.

c

Beams of uniform strength may have any form of section,

but they are usually made either rectangular in section or

an approximation to such a section.
. I hcl?

For beams of rectangular section - equals —^ and

ShdP' ... ^
. ^M= ' in which either h or c? may be variable. Ex-

6
^

pressing Ji"in terms of the variable distance x^ the law of

the variation of h or c?, as the case may be, determines the

shape of the beam.

At any section of the beam where 31 = 0, there is no

moment to be resisted, and so far as bending is concerned

the area of that section can be made zero.

In addition to the unit stress due to bending, tliere is

at all sections of the beam a shearing unit stress due to the

vertical shear at that section.

If S is the allowable unit stress in shear the area of the

section where i^f = is given by J. = —-, where V is the

vertical shear at that section.

Art. 49. Moving Loads.

In many cases the position of the loads is not fixed, and

as the loads may occupy various positions, the value of 31

for finding the greatest unit stress in a beam must be de-

termined from the position of the loads which gives the

greatest bending moment.

When the loads on a beam may change their positions

they are called moving or Live Loads to distinguish them

from stationary or Dead Loads.

Assume a beam, length Z, and Pj and P^ two unequal

loads that pass over the beam. See Fig. 49.
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Let z be the distance of the greater load P^ from the left

end of the beam, and jt? be the distance between the two

Q loads. The dangerous sec-

p—^
* tion w^ill always occur under

one of the loads, and assum-

ing that it occurs under Pj

M= B.^z.

I

^^^- *^- Let Q be the magnitude of

the resultant of P^ and P^^ and x be the distance of its line

of action from P^ ; then

P^x = P^Qp - x^,

^ ^ PiP ^ P3P.
P^ + P^ Q

Therefore the resultant of P^ and P^ acts at a distance

P V
z H ^ from the left end of the beam.

Q
Taking moments about a point in the line of action of

the reaction R<^^

and R^z=Qz-^-?^^z = M.

0,

..,. ..- ^

I

M will be a maximum when

dM_ ^ 2Qz
dz I l

or
1 P,^p

ly si-i— .

2 2$

Therefore when 3/ is a maximum the middle of the beam

is halfway between the resultant of the loads and the

dangerous section of the beam.
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It is evident from the form of the equations that the

same results would have been obtained had there been

any number of forces.

The results were obtained on the assumption that the

dangerous section occurred under the first load, and if

this assumption is true, the vertical shear must change

sio-n as the section is taken to the rio^ht or left of the

load Pj.

When there are but two loads, the dangerous section al-

ways occurs under the left hand load when the two loads are

equal, and under the heavier load when they are not equal.

When there are more than two loads, the position of

the loads that gives the greatest bending moment does

not always have the dangerous section under the maxi-

mum load, but the general law holds true that

When the middle of the beam is halfway hetiveen the re-

sultant of the loads and the dangerous section a maximum

bending moment occurs.

Art. 50. Use of Formula.

To find the position of a system of loads that causes

the greatest bending moment, assume the loads to be

so placed that when the dangerous section is assumed to

occur under any load, the above criterion is satisfied and

the vertical shear passes through zero, and calculate the

iDcnding moment for that position. Tlie result will be

the maximum bending" moment that can occur and have

the dangerous section under the load as assumed.

Assuming the dangerous section to occur under any

other load, the maximum moment for that position may

Le found.

The position that gives the greatest value of M will be
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the one where the greatest bendmg moment occurs as

the loads move over the beam.

When a uniform live load moves over a beam, th&

greatest bending moment occurs when the load extends

over the entire length of the beam. When the load only

partially covers the beam, the maximum moment occurs

at the dangerous section and the above criterion holds true.

The greatest vertical shear caused by any moving load

is found at the supports when the resultant of the loads

is nearest to that support.

Art. 51. examination

1. When is a bar called a beam? A simple beam? a

cantilever beam ? a continuous beam ?

2. What is meant by, " the reactions at the supports " ?

3. Define the term Uniform Load; Concentrated Load.

4. Name the laAvs of mechanics that are used to deter-

mine the reactions for a simple beam.

5. Define Vertical Shear and Bending Moment.

6. As, " the sum of the forces," as well as, '' the sum of

the moments of the forces," acting on each side of the sec-

tion are equal, why is it necessary to use the expression,

" acting to the left of the section," in giving the above

definitions ?

7. From the definitions of the bending moment and

vertical shear, write the expression for each in terms of a

variable distance from the left end of the beam.

8. Why is it necessary to say, "moments being taken

about a point in that section," in defining the bending

moment at any section ?

9. Define Resisting Shear; Resisting Moment.
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10. Certain laws are deduced from experimental obser-

vations made on beams under the action of bending forces.

What are they ?

11. What is the Neutral Surface of a beam ? the Neutral

Axis of a section of a beam ?

12. Show that the neutral axis passes through the center

of gravity of the section.

13. Prove that S=~:
14. State clearly what each symbol in the equation

S = ^—- means, and the units that should be used in sub-

stituting for each.

15. What conditions as to loads and material must any

beam satisfy in order that aS'=^—- will be true for that

beam ?

16. What is a Modulus of Rupture ?

17. Define the term Strength of a beam.

18. Show that the strength of any beam depends on the

value of «, where ct is a number depending on the kind of

a beam and the nature of the loading.

19. What is a Shear diagram ? a Moment diagram ?

20. Define the Shear and Moment line.

21. The shear line for a beam carrying only concentrated

loads consists of horizontal and vertical straight lines. Why?

22. When only uniform loads are considered, the shear

line is a straight line from end to end. Why ?

23. Show that for a beam with both concentrated and

uniform loads, the moment line will be a series of curved

lines. If there are no uniform loads, show that the

moment line will consist of a succession of straight lines

at different inclinations.
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24. If any part of the moment line is straight and

parallel to the line representing the beam, what can you

say of the bending moments for any sections taken in that

part of the beam ?

25. Define the expression, "the Dangerous Section of a

beam."

26. Give the relation that exists between the maximum
bending moment for any beam, and the vertical sliear for

that section.

27. Show that the problem of finding the section of a

beam where the bending moment is a maximum, is the

same as that of finding the section where the vertical

shear passes through zero.

28. What are overhanging beams ?

29. How do they differ from simple beams?

30. Show why the reactions may be found in the same

manner as for simple beams.

31. AVhat is meant by the term Inflection Point ?

32. If the vertical shear is zero at more than one sec-

tion of a beam, how can you find the greatest bending

moment for that beam ?

33. When is a beam said to be one of Uniform Strength?

34. Show that if the section of any beam is varied so

that — varies with M^ the beam will be one of uniform
c

strength.

35. When are the loads on a beam called Moving Loads?

36. Give the criterion for the position of a system of

moving loads that causes a maximum bending moment.

37. If there is more than the one position of the loads

that satisfies the criterion, how can you tell which position

causes the largest bending moment?
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PROBLEMS

1. Find the reactions for a simple beam carrying a

uniform load of w lb. /in. The length is I in. and the

whole weight W lb.

Solution. As the whole load is TF, the sum of the two reactions

must equal W or p , r> _ tp-

Taking moments about a point in the line of action of 7?.,, since the

resultant of the uniform loads act at the center of the beam,

Rd-— = 0,
2

H, =— = — and iin = —

.

^22 ^2
2. Find the reactions for a simple beam, length Z, carry-

ing a single concentrated load P at a distance p from the

right support.

Solution. The sum of the reactions equals the loads; hence

B, + Bo = P-

Taking moments about a point in the line of action of Ttg,

R^l - Pp = 0,

Substituting the value of iip

^+R^ = P or R, = P(^1-B

3. Find the reactions for a simple beam 10 ft. long

carrying a uniform load of 500 lb. /ft.

4. Find the reactions for a simple beam 30 ft. long

carrying a load of 10 tons at a distance of 20 ft. from the

left end of the beam.

5. Find the reactions for a simple beam 30 ft. long

carrying two equal loads of 5 tons each at 10 ft. from

either end, and a uniform load of 500 lb. / ft.
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6. Find the vertical shears at the middle and at the

ends of the beam in problem 3.

Solution. From the definition of vertical shear, F at a section

taken jnst to the right of R^ is the value of that reaction, or 2500 lb.

At the middle of the beam the force acting upward is simply the

left reaction, and the forces on the left of the section that act down
are the unit loads on that part of the beam, or one half the total uni-

form load. Therefore the vertical shear at the middle is

2500 - 2.500 = 0.

At the right end just to the left of the right reaction

2500 - 5000 = - 2500 lb.

or the vertical shear at iig is — 2500 lb.

7. Find the vertical shears in the beam given in prob-

lem 4, at sections taken just to the right and left of the

load and at each end of the beam.

8. Find the vertical shears in the beam in problem 5,

at each end of the beam and at sections taken just to the

right and left of each load.

9. Find the bending moment at the middle of a simple

beam, length I in.,

(a) for a load P at the middle.

(6) for a uniform load of w lb. /in.
P

Solution for (a). The reactions are each—, hence by the defi-

nition of the bending moment, for a section - from the left end of

P I PI
the beam ilf = — x - = — , as there are no other forces acting between

2 2 4
R^ and P. ^ <^ 4

10. Find the bending moments at section just to the

right and left of the load on the beam given in problem 2.

11. Find the bending moment at the wall for a canti-

lever beam, length I in., when the beam carries,

(a) a uniform load of w lb. / in.

(^) a single load P at the free end.

(c) a single load P at jt? in. from the free end.
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Solution for (a). As there is no left reaction, the bending

moment is the moment of the forces acting on the beam about a point

in a section taken at the wall. The moments of all the uniform

forces being equal to the moment of their resultant, let the resultant

of the forces wl equal W; then

M = -W-= -—

.

9 9

12. Find the bending moment at each load and at the

middle of the beam given in problem 5.

13. A cast iron bar 1 by 1 in. in section and 36 in. long

is broken as a beam. The modulus of rupture is 35,000

Ib./sq. in. Required the maximum bending moment.

14. Draw the shear dia-

grams approximately to scale

for simple beams 30 ft. in

length loaded with

(a) a uniform load of 100

lb. /ft.

(5) a concentrated load of

3000 lb. at the middle.

((?) a uniform load of 100

lb. /ft. and a load of 3000 lb. at the middle.

(c?) two equal concentrated loads at 5 and 10 ft. from

the left end.

Solution for (a). The vertical shear at any section distant x

3000

.ooooocxxxxxooo.

t5oot |l5<

B

Problem 14 a. n

from the left end is V = 1500 - 100 X.

This is the equation of a straight line, and as V is 1500 lb. at the

left support and — 1500 lb. at the right support, if AB is 30 ft., AC
= 1500 lb., and BD = — 1500 lb., then the line through the points

C and D will be the shear line, and the diagram ABDC will be the

shear diagram.

15. Draw the shear diagram approximately to scale for

a cantilever beam 10 ft. long loaded with

(«) a uniform load of 500 lb. /ft.

(6) a concentrated load of 500 lb. at the left end.
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((?) a uniform load of 500

lb. /ft. and a concentrated load

of 5000 lb. at the free end.

(d) two equal loads 2500 lb.

each at 5 and 8 ft. from the free

end of the beam.
Problem 15 6.

SoLUTiox FOR (b). The equation

of the shear line is V= — 500, since there is no left reaction and the

only load is 500 lb. at the end.

Therefore, the shear line will be a straight line parallel to AB and

at a distance — 500 from that line. ABCD is the shear diagram.

16. Draw the moment diagrams approximately to scale

for the beams as given in problems 14 and 15.

Solution for the beam ix 14 a. The value of the bending

moment at any section x from the left end is

M Ji,x
1 o

^''-^ =1500 a: - 100—

where x is in feet. Giving any values to x, the corresponding value of

M may be found.

When X = 0,

X = ft.,

a; = 10 ft.,

X = 15 ft..

M = 0.

M = 6250 ft. lb.

3/ = 10,000 ft. lb.

M = 11,250 ft. lb.

3000
nrmnnnnnnno

1500 1500

As the loads are symmetrical with the middle of the beam, the

values of AI for x equal 20, 25, and

30 ft. will be the same as for x

equal 10, 5, and ft. Let AB =
30 ft. and CD, EF, GH, etc., repre-

sent on some scale the values of M
corresponding to x equal 5, 10, 15

... 30 ft. ; then a smooth curve

passing through ADF, etc., will be

the moment line, and the figure >* 5 io 15 &o £5

AHE will be the moment diagram. Problem 10.
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17. Write the expressions for the value of M and V
for any section of the beam, and determine the maximum
bending moments and vertical shears,

(^d) for a simple beam loaded uniformly with W lb.

(h') for a simple beam loaded at the middle with W lb.

((?) for a cantilever beam loaded uniformly with W lb.

(c?) for a cantilever beam loaded with W at the end.

The length of all the beams being I ft.

Solution for (a). The expressions forM and Fmay be obtained

from the general formula by making " the concentrated loads to the

left of the section " equal zero.

Therefore, M = R,x '— = R,x , if W = wL
2 2

and v = R,-- tvx,

3
4 - U'l

2*

F = wl — wx.Hence
2

This expression is zero when x = -, and as M is a maximum when

V is zero, substituting the value of x, which renders F = in the

expression for M, gives

II r _ wlx ICX^ _ WP Wl^ _ tvl^ _ Wl

Evidently F is a maximum when x is zero.

18. A simple beam is 20 ft. long and carries two con-

centrated loads, one 100 lb. at 5 ft. and the other 500 lb.

at 8 ft. from the left end, and a uniform load of 100 lb. /ft.

extending over the beam for a distance of 12 ft. from the

right end of the beam. Draw the shear and moment
diagrams and calculate the maximum bending moment
and vertical shear.

19. A simple wooden beam 20 ft. long, 8 in. wide, 10

in. deep, carries a uniform load of 80 lb. / ft. Required

the maximum unit stress in the beam.
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Solution. For a uinformly loaded simple beam the maximum
value of M is :

Wl 80 X 20 X 20 X 12 .^f,^.. . ,,— = = 48,000 in. lb.,

8 8
'

d

and ^ = 1- = ^= 6 ^ _6_
I hd^ hd-' 8 X 10'^ ~ 800'

12

e Mc 48,000 x 6 opa n /S= = —^ = 360 lb. / sq. m.
/ 800

^

20. A simple wooden beam, rectangular in section, and

20 ft. long, is to be designed to carry a load of 240 lb. at

the middle with a maximum unit stress of 300 lb. / sq. in.

{d may be assumed to be equal to 6 h.)

Solution. The maximum bending moment is :

,, PI 240 X 20 X 12 ,7 hd'^ d^M = — = and - = — = —

,

c 6 36

and
M
S

4 4

I

c

.-.
.1/ X

S

36 = 6/3.

240 X 20 X 12 X 36Whence d^ = -^^ ^ -^ ^ ^- ^ -^^ ^ 1728, or ^ = 12, 6 = 2.
4 X 300

'

21. A simple wooden beam is 1 foot square and 10 yd.

long. What uniform load can it carry if the unit stress

is not to exceed 300 lb. / sq. in. ?

22. If the beam in problem 21 also carried a load of

1000 lb. at the middle, what uniform load may also be

carried if the unit stress is not to exceed 400 lb. / sq. in. ?

23. Two planks, 12 in. wide and 2 in. thick, are placed

one on top of the other and used as a simple beam. They

support a uniform load of 1000 lb. What is the maximum
unit stress in the material ? What would it be if the

planks were placed side by side and carried the same load?

24. A simple beam of wrought iron is 4 in. wide, 6 in.

deep, 12 ft. long, and carries a uniform load of 32,000 lb.

Is it safe ?
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25. If the beam in problem 24 was a cantilever beam,

what uniform load will it carry with a maximum unit

stress not greater than the elastic limit ?

26. A simple steel 10 in. I beam weighing 25 lb. / ft.

is 18 ft. long and carries a uniform load, including its own
weight of 15,000 lb. Required the maximum unit stress.

Solution. The table gives the value of - for this beam as 24.4.

The maximum value of M is
^

m ^ 15,000 X 18 X 12
^j^^ s =—

8 8
"

/
*

rj c 15,000 X 18 X 12 X 1 i«AAAiK / o^ ,•„Hence S = — = lo.oOO ib. / sq. m.
8 X 24.4 ' ^

27. Show that when the weight TF of a simple beam is

2 % of the load at the center, the error in the unit stress

as found by neglecting the uniform load due to the weight

of the beam is about 1 %.

28. A common rule states that when the load at the

center of a simple beam is greater than five times the

weight of the beam the weight may be neglected when
making the calculations for strength. What maximum
error will this rule allow ?

29. If W is the weight of a cantilever beam and P the

P
load at the end, find the ratio of -^ when the error in

the unit stress caused by the neglect of TF is 5 %.

30. Select a simple I beam of structural steel 24 ft.

long to carry a load of 12,500 lb. at the middle with a

factor of safety of 4.

The maximum value of M is

3^ ^ PZ ^ 12^ ^ 24 X 12. s = ^Jh^ = 15,000 Ib./sq. in.
4 4 4

^

M^I^ 12,500 X 24 X 12 ^ g^
S c 4x15,000

The table gives the value of / for a 15 in. beam weighing 45 lb. /ft.

as 60.8, and as P = 15 W, this beam will satisfy the conditions.
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31. Select a standard steel I beam 10 ft. long to be used

as a cantilever beam, to carry a load of 4 tons at the free

end. Factor of safety 4.

32. Select a simple steel I beam for a span of 20 ft.

to carry two equal loads of 2 tons each at 5 ft. from either

end and a uniform load of 300 lb. /ft., the unit stress

not to be greater than 16,000 lb. /sq. in.

33. If the term Coefficient of Strength is defined as the

product of the total uniform load on a simple beam multiplied

by the length of the beam in feet, show that - varies as this

product.

34. Show that the coefficient of strength for a simple

beam carrying a concentrated load at the middle is twice

that for the same load uniformly distributed.

35. Find the relative values of the coefficient of strength

for cantilever beams uniformly loaded, and loaded at the

free end, compared with the same load uniformly distrib-

uted over a simple beam.

36. Select a standard steel channel 12 ft. long to be

placed with the flanges vertical and used as a simple beam

to carry a uniform load of 15,000 lb. Factor of safety 4.

37. A beam 30 ft. long is supported at points 10 and 5

ft. from the right and left ends. There is a uniform load

of 500 lb. / ft. between the supports and concentrated

loads of 450 lb. at either end of the beam.

(a) Draw the shear and moment diagrams.

(^) Find the greatest bending moments and vertical

shears.

(c) Find the inflection points.

((?) Select a steel I beam to carry the loads with a

maximum unit stress of 16,000 lb. /sq. in.

38. A beam supported at two points 18. ft. apart over-

hangs each support 6 ft. The overhanging ends carry a
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uniform load of 300 lb. / ft. and there is a concentrated

load of 12,000 lb. at the middle of the beam.

(a) Draw the shear and moment diagrams.

(5) Find the greatest bending moment and vertical

shear.

((?) Find the inflection points.

(c?) Select a steel I beam to carry the loads with a

maximum unit stress of 16,000 lb. / sq. in.

39. Three men carry a stick of timber 12 x 12 in. x 12

ft. long. One man is at one end and the other two are at

such a point that each of the three men carries an equal

load. Find that point.

40. A cantilever beam of uniform strength rectangular

in section is 12 ft. long and carries a load of 1200 lb. at

the free end. The material is cast iron and the factor of

safety is 10.

Find the largest and smallest sections and make sketch

showing the plan and elevation of the beam when,

(a) the width is constant at 4 in.

(5) the depth is constant at 12 in.

41. A simple beam of uniform strength is rectangular

in section and 12 ft. long and carries a uniform load of

9600 lb. The material is cast iron and the factor of safety

is 10. Find the smallest and largest sections and make a

sketch showing the plan and elevation of the beam when,

(a) the width is constant at 4 in.

(6) the depth is constant at 12 in.

42. If the beam in problem 38 was a rectangular steel

beam of uniform strength and constant depth, find the

proper size for the largest section when h = d for that sec-

tion and the safe working unit stress is 16,000 lb. / sq. in.

If the allowable unit stress in shear is 10,000 lb. /sq. in.,

find the area of the least section possible. Make a sketch

of the plan of the beam.
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43. Two equal loads are 6 ft. apart. Find their position

as tbey are moved over a simple beam 20 ft. long that

gives the greatest bending moment in the beam.

44. Three loads each 4 ft. apart are moved over a beam
18 ft. long. From left to right the loads are 4000, 2000,

and 2000 lb. Find the position of the loads that gives

the greatest bending moment in the beam.

45. As the loads (problem 44) pass over the beam from

right to left, show that the maximum vertical shear for any

position of the loads is given by F = (
1 ]8000, where

a is the distance of the 4000-lb. load from the left support,

and b the distance of the resultant of the loads from the

same load.

46. As the loads pass over the beam (problem 44),

make a diagram, using as ordinates the vertical shear to

the left of the 4000-lb. load and as abscissa the distance

of that load from the left end of the beam.

47. If Q is the resultant of a system of loads moving

over a simple beam, x the distance of Q from the left end,

and a the distance of Q from the middle of the beam,

show that the conditions for maximum moment require

that
J

I — x=x— 2a when x >-,
'A

and
, . n 1

?
I — x = x + Za when x <^'i

and if this condition is satisfied, that the value of the

maximum moment is given by

yr Q ^
n2 f the moments of the loads on|

-^^max — y V^ ± ^ «^
I
ti^e left of the dangerous section.

J



CHAPTER IV

TORSION

Article 52. Derivation of Formula.

In the previous chapters the forces were assumed to

act in a plane passing through the axis and were either

parallel or perpendicular to the axis.

The forces that produce the stress known as torsion act

in planes that are perpendicular to the axis of the bar,

and while the lines of action of the forces are perpen-

dicular to it, they do not pass through the axis.

The effect of such forces must be to twist the bar.

Assume a cylindrical bar, one end of which is firmly

fixed in the wall, to be

acted on by a couple ly-

ing in a plane perpendic-

ular to the axis of the bar

at a distance I from the

wall, and whose moment

about that axis is Pp.

A fiber of the bar that

before the application of the force occupied the position

of the line ad (Fig. 52 a), after the force has been applied

will occupy the position of the helix ab^ and a point d on

the surface of the bar will have moved to the position h.

It is evident that the angle had^ the angle of the helix,

is independent of the length of the bar and depends only

83

Fig. 52 a.
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on the twisting forces and the material of the bar. Since

any plane section perpendicular to the axis of the bar

between the wall and the couple would contain an arc

similar to hd^ and the length of that arc is proportional

to the distance from the wall, the angle hod is propor-

tional to the length of the bar and the twisting forces.

This angle is called the angle of twist, and will be

denoted by 0.

By analogy with tension, the distance a point on the

end of the bar moves under the action of the twisting

forces being similar to the distance a point on the end

of a tension bar moves under the action of the tensile

forces, the arc hd may be taken as a measure of the

deformation of the surface fibers of the bar due to the

twisting forces.

As the arc hd was proportional to the length, — can

be taken as representing the unit deformation.

Experiment has proven that when a bar is circular in

section and no stress is greater than the elastic limit, the

line od^ moved to any

new position during the

twisting of the bar, re-

mains a straight line.

This being true, the

length of any arc d^-^

(Fig. 52 5), with a center

at and a radius y^ is-

proportional to its radius,

and as the arc is propor-

tional to the deformation

at the radius y, the force

Fig. 52 6. producing this deforma-
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tion is proportional to tlie same distance. This reasoning

is true for any perpendicular section of the bar between

the plane of the couple and the wall.

Assume the bar to be cut by a plane perpendicular to

the axis between the wall and the twisting couple, and

introduce forces in that section to render the free end in

equilibrium. These forces must all act in a plane per-

pendicular to the axis, since the external couple has no

component perpendicular to such a plane, and their re-

sultant must be equivalent to a couple whose moment is

equal to that of the twisting moment.

Considering the two faces of the bar in any section,

it is evident that the face on the right end tends to slide

against the face on the left end as the former tends to

rotate about the axis of the bar, thus producing a shearing

stress throughout the section. Since the force, and con-

sequently the unit shearing stress, is proportional to the

distance from the center of the bar, if we let S^ be the

unit shearing stress in the surface fibers, e be the distance

of those fibers from the axis of the bar, and ?/ be the dis-

tance of any fiber from the same axis, then — is the unit
c

stress at a unit's distance from the axis and —^«/ is the
c

unit stress at any distance y.

Considering the stress uniformly distributed over any

small area dA at the distance ?/, — i/dA is the force acting
c

on that elementary fiber, ^ml ^-^ y^dA is the moment of
c

this force about the axis of the bar. But the sum of the

moments of the forces acting in the section is equal to the

twisting moment Pj9, hence — j i/^dA = Pp.
f
if'dA is
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the expression for the polar moment of inertia about an

axis through the center of gravity of the section, and

writing J for ^ ^j
I 'if'dA gives Pp = —^, (e)

which shows the relation between the maximum unit stress

in shear and the twisting forces.

Art. 53. Modulus of Section.

ST
Comparing formula (e) with M=— , it will be noticed

c

that they are of the same general form, iltfand Pp repre-

sent the effect of the external forces, S in each case is the

maximum unit stress in the section, and by analogy with

-, - may be called a modulus of the section. Formula
c c

(e) is only true for bars whose sections are circular, and

where the material and loading of the bar satisfies the

conditions stated for M=—
c

Art. 54. Square Sections.

For rectangular sections the formula is only ajoproxi-

mately true, as a radial line drawn from the corner does

not remain straight during the twisting of the bar, as was

the case with the circular section.

The investigations of St. Venant cover the rectangular

section, and his results give for a rectangular shaft sub-

jected to torsion,
g

^i? = ^.j-g (nearly),

in which d is the side of the square. From the form of

J d^
the expression the effective value of - must be —— instead

c 4.8
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of the calculated value , hence the value of Pp as

found from the above formula is less than that obtained

from equation (e), when equal values of S^ and d are

used.

Square sections are apt to be weaker than St. Venant's

formula would indicate, since the maximum stress is

carried on the edge of the square and any slight defect

reduces the effective diameter of the bar.

For this reason square sections are rarely used to resist

torsion alone.

Art. 55. Illustrations.

The resistance at the wall may be assumed as another

couple, whose moment is equal and opposite to that of

the twisting moment, without altering the conditions as

assumed when formula (e) was developed. In the case

of a line shaft, where the belt from the engine produces

a twisting moment at one end of the shaft, the resistance

of the belt on the pulley at the other end is equivalent

to an equal moment. If there are several pulleys on the

same shaft, each producing a moment by its resistance

to turning, it is evident that the resisting moment of the

shaft will not be constant throughout the length, but will

vary with the resistance that it has to overcome. To

illustrate, assume a shaft with three pulleys, one at each

end and one at the middle of the shaft. The driving

moment is applied at the left end and the resisting

moment of the other two pulleys, PiPi and P^f^', must be

equal to the driving moment Pjp, The moment to be

resisted by the shaft between the driving pulley and the

one at the middle is P]p = P^Vx + ^iVv After passing
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the middle pulley the resistance to be transmitted b}^ the

shaft is only the twisting force of the third pulley, and

consequently the resisting moment between the second

and third pulleys is equal to P^p^-

Art. 56. Twist of Shafts.

In Fig. 525, dh was taken as a measure of the defor-

mation of the surface fiber, and — the unit deformation

of that fiber. From the figure dh = 6c and by the deh-

nition of the modulus of elasticity, if S^ is the unit stress

in the surface fibers, the shearing modulus of elasticity

must be ^ ^i t> ij^_S,_SJ Ppl

I

The latter expression is obtained by substituting for aS'^

its value from S, = ^-•

Equation (/) gives the relation between the modulus

of elasticity for shear, the twisting moment or the unit

shearing stress, and the angle of twist.

When the data given in any problem is sufficient to

determine two of the three quantities, the twisting moment,

the unit shearing stress, or the section modulus, the

V 'T
formula Pp = ^' will completely determine the other

c

one. Or when the given data will determine three of

the following quantities, the twisting moment or the unit

shearing stress, the dimensions of the bar, the angle of

twist, and the shearing modulus of elasticity, formula (/)
€an be used to solve any problem involving the twisting

moment or the unit stress and the angle of twist.
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Since all of the tabulated values of the constants of

materials are given in pounds and inches, all dimensions

of weight and linear or square measure must be reduced

to pounds and inches before making the substitutions in

the formulas. As the value of 6 used in the development

of the formula was in circular measure, 6 must be ex-

pressed in radians.

Art. 57. Relative Strengths and Stiffness of Shafts.

The strength of a shaft may be defined as the twisting

moment it will carry with a given unit stress. Formula

(e) shows that the strengths of shafts vary directly as

the value of ^-i^ for each shaft, and when the shafts are
^

. J
of the same material, as —

c

Defining the stiffness of a shaft as the angle of twist

for a given value of Pjt>, since = -^ or —^, it is evident

that the stiffness of two shafts of the same material varies

directly as — or -, depending on whether the twisting
J c

force is given directly or in terms of the stress.

Art. 58. Horse Power of Shafts.

A horse power being defined as 33,000 ft. -lb. per

minute, if H is the horse power to be delivered by a shaft

making N revolutions per minute, the value of Pp in

terms of the horse power may be found from the equality

of tlie work done by the twisting force per minute and

the work represented by Ahorse powers. Assuming that

-P is a force acting at a radius p, the work done by that

force in one revolution must be ^irPp in. -lb. and as

a horse power is 33,000 ft.db. per minute, or 396,000
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in. -lb. per minute, 2 7rP/j>iV = 396,000 H^ wliicli re-

duces to H=^r,
PpN
'•'

{U\Ci
('"^PPi'oximately). Substituting for

Pp its value in terms of S^ from formula (e), gives

H= ^^ — These two expressions may be used to de-

termine the horse power that a given shaft will transmit

when the number of revolutions per minute and the twist-

ing moment or the maximum unit stress are known.

The values of either Pp or Sg may be found from (/)

and the angle of twist for a given horse power determined.

Art. 59. Shaft Couplings.

When two lengths of shafting are to be joined together,

the connection is often made as in Fig". 59. The moment

E:;:

E

E

?

:::;}

J

Fig. 59.

of the shearing stresses in the bolts must be equal to the

twisting moment of the shaft, and the relation between

the twisting moment of the shaft and the resisting

moment of the bolts may be stated as Pp = SJ ——-,

where J' is the polar moment of inertia of the section of

a bolt about the axis of the shaft, n the number of bolts,

SJ tlie maximum unit stress in the bolts, and c' the dis-

tance of the most distant fiber of the bolt from the

axis of the shaft.
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If the bolts and shaft are of the same material, then

- = '—J-, where e/ancl c refer to the shaft and J' and c' to
c c

the bolts. The polar moment of inertia of the bolt about

the axis of the shaft is equal to J' = Jy-\- Ah^, where J^

is the polar moment of the bolt section about an axis

through its center of gravity, and h is the distance of the

axis of the bolt to the axis of the shaft. Expressing

'_ and -—- in terms of the diameters of the shaft and
e c'

bolts, gives a method for finding the proper diameter of

the bolts to be used. The equation thus formed gives a

very awkward expression for the value of the diameter

of the bolts, and it is common practice to assume that the

shearing stress is uniformly distributed over the area of

the bolts. This is equivalent to assuming that the result-

ant of the shearing stresses acts at the center of the bolts.

Let SJ^ be the unifoi-m unit shearing stress in the bolts,

h the radius of the bolt circle, or the distance between the

center of the shaft and the center of the bolts, and d the

diameter of the bolts; then the resisting moment of

Trd^
the bolts must be n-^-j-SJ' 7i, and equating this to the

twisting moment of the shaft gives

which is in convenient form for use in the determination

of the bolt diameters.

As the resisting moment of the bolts must be equal to

the resisting moment of the shaft, if S^ is the maximum
unit stress in the shaft and D the diameter, then
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gives the relation between the unit shearing stresses in the

shafts and bolts. Either the number of the bolts, their

diameter, or the radius of the bolt circle can be taken as

unknown.

In applying the approximate solution to the solution of

a problem, the total bolt area, n—r-^ needed, may be found

and the number of bolts chosen that will give the required

area. The assumption made in the approximate solution

is also equivalent to assuming that J' = —-— and c' = h.

J'
Comparing the exact and approximate values of —-, we tind

c'

that the approximate value is nearly 10 % larger than the

accurate one, when 7i = 4 c?. The error will increase as

the ratio of A to c? increases, and of course decrease as that

ratio decreases. The error, while not of much importance

in the majority of cases, should always be considered wlien

the decision is made regarding the diameters, the total

bolt area as found by the approximate solution being less

than the true area.

Art. 60. Modulus of Rupture in Torsion.

When the twisting moment Pp is great enough to rup-

ture the bar, the value of S^ as found by equating this

value of Pp to — has been called the modulus of rupture

in torsion. Tlie value of such a constant of material is

doubtful, as the formula is not true when the unit stress

is greater than the elastic limit. It would seem to be

better practice to use the maximum unit stress in shear,

as determined by the use of P = ^aS' as the maximum unit

stress in torsion, and base any factor of safety on that

constant.
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Art. 61. Helical Springs.

When a wire is wound around a cylinder so that the

axis of the wire forms a helix, the resulting form of the

wire is called a helical spring. Take such a spring made

from wire whose diameter

is d and wound on a cyl-

inder so that the diame-

ter of the helix is i>,

compressed or extended

by tlie force P whose line

of action passes through

the centers of all the coils,

and consider one coil. If

the spring is closely

wound and D is large compared with d^ the plane of the

coil will be nearly perpendicular to the line of action of

the force; hence the force P acting with a lever arm —
tends to twist the wire.

Fig. 61.

The twisting" moment is
PD

and the section modulus
^3

"
pjy

of the wire tt— ;; hence, taking aS'^ as the unit stress =
lb 2

IT—- Sg^ or P = —— aS'^ gives the relation between the ten-

sile or compressive force P and the dimensions of the

spring.

The length of one coil of the spring is approximately

ttD, and if the wire is twisted through a small angle 0, by

PD
a moment that increases uniformly from to —^^ the

PD '^

work done on the wire of one coil is 6 , where is in

circular measure. If we let A be the total deflection of

the spring, that is the amount of shortening or lengthening,
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and B the deflection for one coil, as tlie force acting varied

BP
uniformly from to P, the work done on one coil is

Since these two expressions represent the same quantity

PD SP ^8
of work, they must be equal, or —— = —-- or 6 =^.

As 6 is the angle of twist, formula (/) gives as its value

^^ Ppl ^ 16 P^P
FJ Fd"^

Equating the two values of ^,

lb =— or o = •

,

Fd^ B Fd^
'

which is the deflection of one coil in terms of the load P.

Taking Q^SJ^^h^S^rr^
Fc D Fd

'

we have 3 = -^ as the relation between the unit stress
Fd

and the deflection for one coil.

Since the strength of any bar under the action of twist-

ing forces is independent of the length of the bar, the

formula for the strength of a spring is also independent of

the number of coils. If n is the number of coils, the total

deflection of any spring must be n times the deflection for

one coil, or ^Pmn S^irPhiA = or -^ '

Fd^ Fd

EXAMINATION

1. What is a torsional force ? How does it differ from

a force that produces a shearing stress that is uniform over

the section of a bar ?

2. Can a torsional force produce any tensile or com-

pressive stresses ?
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3. " It is evident that the angle had is independent of

the length of the bar." Prove it.

4. Show that the angle of twist depends on the length

of the bar.

5. If a straight radial line drawn on the end of a bar

remains straight when the bar is being twisted, show that

this fact proves that the unit stress is proportional to the

distance from the axis.

6. Show that S,=^-
J

7. State under what conditions of load and material
O J

the formula Pp = -^ is true.
c

8. Define the terms '' strength of a shaft"; "stiffness

of a shaft."

9. Does the strength of a shaft depend on its length ?

Is the same true of the stiffness ?

10. Two shafts of the same diameter and lens^th are of

different materials. What is their relative strength ?

What is their relative stiffness ?

11. Show how to find the expression for the modulus of

elasticity in shear.

12. Why was it necessary to reduce the value of a horse

power, 33,000 ft. -lb., to inch-pounds in order to obtain the

expression ^^JTV^
^~ 63,000 c"

PROBLEMS

1. One end of a circular bar 2 in. in diameter and 10 ft.

long is fixed in a wall, and at the other end there is a

couple Avhose moment is 300 ft.-lb. Required the unit

stress in the bar ?

Solution. The value of J —^^-— and c = — ; hence - — '^^—^.

Pp = 300 ft.-lb. = 3G00 iu.-lb.
'^^ ^ c 1(J
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S J
Substituting these values in Pp = -— , and solving for Ss, gives

c

c, 3600 X 16 nor.A ir. /
5s = :

— = 2290 Ib./sq. in.
TT X 8

2. A circular bar 7 in. in diameter, 10 ft. long, is acted

on by a force of 10 tons perpendicular to, and at a distance

of 3.14 ft. from the axis. Required the unit stress induced.

3. Find the diameter of a circular steel bar to carry a

twisting moment of 20 ft. -tons.

4. Find load that can be applied at the end of an arm 6

ft. long so that the maximum unit stress induced in a cir-

cular bar 2 in. in diameter will not exceed 12,000 Ib./sq. in.

5. A circular steel bar 2 in. in diameter is twisted by a

force at the end of an arm 6 ft. long. Required the force if

the unit stress due to torsion is equal to the elastic limit.

6. If the bar in problem 1 was soft steel, find the angle

of twist.

Solution. Taking the values as found for 1 and substituting in

= —> Z = 10 X 12 in. and F = 12.000,000,
Fc

^ ^ 2290 X 10 X 12 ^ 22,900 ^ ,,29 radian,
12,000,000 X 1 1,000,000

or approximately 1° 18'.

7. A soft steel bar is 6 in. in diameter and 20 ft. long.

What force acting tangent to the surface will twist the

bar through an angle of 1° ?

8. A steel shaft 2 in. in diameter and 50 ft. long is

transmitting a torsional moment that causes a unit stress

equal to the elastic limit. Required the angle one end

is twisted through relative to the other.

9. Find the diameter of a steel shaft 10 ft. long to

carry a twisting moment of 81,700 ft. -lb., if the unit

stress is not to be greater than 10,000 Ib./sq. in., and

the angle of twist less than 1.15°.
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10. Find the diameter of a steel shaft making 100

revs. /min. and transmitting 200 H.P., the unit stress

being 6300 lb. /sq. in.

S.JN 6300 X TT X ^3 X 1 00 onnSolution. H = ^./^..^ = ^o r^ncx
—

T^
~ '^^^'

Dd,000 c 00,000 X lb

,o 200 X 63,000 X 16 . ^^ .

d^ = _ : . = 4.0/ in.
6300 X TT X 100

The shaft chosen would be either 4^ or 5 in. in diameter.

11. The Allis Chalmers Co. base their tables for the

strength of mild steel shafting on the formula 11= cd^ N^

where d is the diameter of the shaft in inches, and c a

number which has the following values:

For heavy or main shafts e = .008

For shafts carrying gears c = .010

For light shafts carrying pulleys c= .013

Find the unit working stress allowable in each case.

12. 6000 H.P. is to be transmitted through a shaft. If

the shaft is a hollow cylinder 36 in. outside diameter, find

the inside diameter. Take the unit stress as 12,000

lb. / sq. in. and the revolutions per minute as 90.

13. A coupling is to be used to connect two lengths of

shafting 4 in. in diameter. The maximum allowable unit

stress in the shaft is 10,000 lb. /sq. in., the diameter of

the bolt circle is 6 in., and the allowable unit stress in the

bolts is 8000 lb. /sq. in. Find the diameter and number
of bolts necessary, assuming that the shear is uniformly

distributed over the section of the bolts.

14. A hollow shaft has the outside diameter twice the

inside diameter. Compare its strength with that of a

solid shaft of the same material and section area.

15. If the elastic limit of the material in one shaft is

60,000 lb. /sq. in. and costs 10^ per pound, what can
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3'ou afford to irdj for a shaft to do tlie same work, if the

ehistic Ihuit of the material is 30,000 lb. /sq. in. ?

16. A helical spring is made of wire w^hose diameter is

1 in., the mean diameter of the coil 4 in., and has 30 coils.

If the value of F is 12,000,000 and the working unit

stress 60,000 lb. / sq. in., required the load it will carry

and the deflection under that load.

17. A helical spring has to carry a load of 5890 lb.

and has a deflection under that load approximately 10 in.

The unit stress, diameter of the wire, number of coils and

the modulus of elasticity in shear are the same as in prob-

lem 16: find the diameter of the coils.

18. D. K. Clark gives as the deflection for one coil of a

helical spring B = o,^ .4 , where d is the diameter of the

wire in sixteenths of an inch. Assuming the value of F
as 12,000,000, what unit stress does this formula allow?



CHAPTER V

THE ELASTIC CURVE

Article 62. Definition.

When the beam is bent, the neutral surface assumes

a curved form; and the projection of this surface on a

vertical plane parallel to the axis of the beam is called

the Elastic Curve. If the equation of this curve for any

beam is expressed as y=f{x)^ where y is the deflection

of the beam at any point distant x from the left end of

the beam, the deflection of the beam at any point can be

easily found.

Art. 63. Equation of the Elastic Curve.

To derive this

equation of the

elastic curve let

Fig. 63 represent

a portion of a bent

beam.

Let y^ measured

along the axis of

the beam be tak-

en as representing

c??, where I is the

length of the beam

and the curve dl a

differential part of Fig. 63.

99
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the elastic curve, then if o is the center of curvature, oi

and oj are radii. Before any bending took place these radii

were parallel to each other, and eh may be assumed to have

been in the position kd parallel to af. Let the greatest

distance of the neutral axis to the surface fiber be c and

assume that jh = c. The deformation of the outer fiber

kb
is kb and the unit deformation is — , since kb is the chano-e

dl
"^

in the length dl; ^ is the modulus of elasticity, and S

the unit stress in that fiber, hence kb = . From theU
similar triangles jkb and oij

ji oj

But oj = r = the radius of curvature, ji = dl, jb = c, and

kb = -TT ; hence, substituting these values in (1), we have

Sdl _ c S _c ,,o_ -^^^

ri 77 — ~i OV ~ — -; but O — —r-

1

Edl r E r 1

. M E EI .oxhence — = — , or r = , (1)It M ^ ^

is the equation of the elastic curve of a beam in terms

of the modulus of elasticity, the bending moment at any

point of the beam, the moment of inertia, and the radius

of curvature of the elastic curve at that point.

The value of r expressed in rectangular coordinates is

r = g (3)

dx^

Since the degree of curvature of any beam in an en-

gineering structure is very small, the value of the tangent
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of the angle which the tangent at any point on the curve

makes with the axis of X is a very small quantity and

-^ ) may be neglected in comparison with unity. Equa-

tion (3) then reduces to

If dx is assumed to be equal to dl^ an assumption which

is approximately true when the degree of curvature is

small, and the value of r as just found is inserted in

equation (2), we have

dx^

which is the differential equation of the elastic curve of

any beam. M is the bending moment for any part of

the beam for w^hich the equation represents the curve,

therefore must be expressed in terms of x any distance

from the left end of the beam, and y is the ordinate to

the curve or the deflection of the beam.

Since the condition that ^ = — was introduced in the
e

•derivation, the unit stress must be within the elastic limit,

3Ic
and as the formula aS' = ——

- was also used, all the condi-

tions of the materials that are necessary to the correct

use of that formula obtain with the one just developed.

The assumptions that dl = dx^ and that the maximum

value of —^ was so small that [—-] might be neglected as
dx \dxj

compared to unity, introduce errors that, while they are

small, increase as the degree of curvature increases. The
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use of the formula under ordinary engineering conditions

gives results that agree well with those obtained in exper-

imental work, the discussion of the limitations to its use

being given to show that the formula is not applicable to

all cases.

Art. 64. Deflection of Beams.

Let 31= f{x) be the expression for the bending moment

for a portion of any beam loaded in any way; then

^jfl =/(:.) (1)

is the differential equation of the elastic curve for that

part of the beam for which /(rr) represents the bending

moment.

Integrating (1),

^J^=/'(x)+C, (2)
ax

where C is a constant of integration. The value of

may generally be found by noting that --^ is the tangent

of the angle which the tangent at x makes with the axis

of JT, and from the conditions of the problem, finding a

value of X for which -^ is either zero or known.
dx

Integrating again,

UIi/=f'(x') + Cx+ C,. (3)

The value of 6\, the constant of integration, can in

most cases be determined by finding a value for x for

which ^ is either zero or known.

When O and 0^ are determined, equation (3) may be

used to find the deflection at any point of the beam for

which the bending moment is equal to /(^).
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As the right hand member of equation (2) is the differ-

ential coefficient of equation (3), the value of x which ren-

ders f {x) 4- (7 = makes the value of ?/ a maximum, or

the maximum deflection for that part of the beam may be

found. As an aid in the determination of the constants

of integration, the student is reminded that when the

moment diagram is symmetrical about a vertical line at the

middle of the beam, —^ is zero for a value of x = -^ and
dx 2

for the special case of cantilever beams —^ is zero at the
dx

wall, as the restrainment keeps that part of the beam

fixed and horizontal.

Since there is no deflection at the supports, y will always

be zero at the points where the beam is supported. When
there are concentrated loads on the beam, the expression

for ifer will take a different form for each part of the beam

between the loads or between the loads and reactions.

If there are n concentrated loads on the beam, there

will be 9i + 1 forms that the ex23ression for the bending

moment may take, making n -\-\ equations of the elastic

curve, tlie double integration of each bringing into the

problem 2 (ii + 1) constants of integration.

For simple beams the value of x that will make -^ =
dx

is not known unless the loads are symmetrical with the

middle of the beam, but y is always equal to zero at the

supports where x is either or I.

Any two of the n •\-\ equations representing consecu-

tive portions of the beam will have the expressions for -^
dx

and y equal for a value of x at the load where the equa-

tions meet. As there are but 2 ri + 2 constants of inte-
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gration, and two known conditions are always to be had

from the fact that 3/ = when x= or x = I, the 2 n

equations resulting from the equating of the values of

—^ and ^ under each load will suffice to determine the
dx
other 2 n constants of integration.

In using equation (3) for the determination of the

maximum deflection of a beam, the student is again

reminded that the equation only holds true for that

portion of the beam represented by /(a;), and where

there are several concentrated loads, each portion may

have to be investigated, in order to find the greatest

value of t/ for the beam. In general, an inspection of

the distribution of the loads on the beam will show the

portion of the beam where the greatest deflection is likely

to occur.

If the bending moments for simple and cantilever beams

loaded uniformly with TFJ simple beams loaded at the

middle with IT, and cantilever beams loaded with W at the

end, are expressed in terms of 2:, these moments may be

substituted in UI —^ = M^ forming four differential equa-
dx^

tions. Integrating each equation twice gives the value of

y^ the deflection of the beam for any value of x. The

maximum value of the deflection y may be expressed as

1 Wl^
f z=z —^^ where yQ is a constant depending on the kind

of a beam and the nature of the loads. Transposing,
TpTfW= B—-^. The load a similar beam will carry was
73 "^

SI
given as ir= «—, and if these two expressions for W

Ic
aSP

are equated we find that f = — —-, giving the relation
l3 Ec
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between the maximum deflection, the dimensions of the

beam, the unit stress, and the modulus of elasticity.

Attention is called to the way / varies in the two

expressions for the maximum deflection.

When the load W is considered, / varies directly as P

and inversely as Z, and when the unit stress is given, /
varies directly as P and inversely as c. For rectangular

sections, this latter variation makes the maximum deflec-

tion independent of the breadth of the beam.

Aet. 65. Restrained or Fixed Beams.

A beam is said to be restrained or fixed when one or

both ends are so firmly imbedded in the wall that the tan-

gent to the elastic curve at the fixed ends always remains

horizontal during the flexure of the beam. A cantilever

beam under this definition is a fixed beam when it projects

from the wall ; but since there was no reaction at the free

€nd, the bending moments and shears can be determined

without reference to the fixed end. When the free end of

a cantilever beam has a support placed under it, the con-

ditions are changed. The magnitude of the reactions

can not be determined from the conditions for mechanical

equilibrium that were used for simple beams. The value

of Jf for any section of the beam will contain a term that

includes the unknown reaction, and this value of M sub-

stituted in the general equation of the elastic curve will

give the differential equation of the curve for this beam.

When this equation is integrated twice, the value of the

unknown reaction may be found by applying the known

conditions that the resulting equations must satisfy.

Let Fig. 65 represent a beam fixed at one end and

supported at the other, loaded in any way. If Mi is the
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reaction at the left end of the beam, the bending moment
for a section distant x from that end is

wx2 rthe sum of the moments of the loads 1

i!f"= Hy"^ \ to the left of the section with refer- U
^ [ence to a point in that section

J

and putting this value of M\w. the general equation of the

elastic curve gives

rrr d y -wy ivx
j sum of the moments )

d7?
^

2 I
of the loads, etc. \

'

which is the general equation of the elastic curve for

a beam fixed at one end and supported at the other.

If there are no concen-

trated loads, the last

term of the right hand

member will be zero^

and if there is no uni-

wx^

chrrhc'frhriMm'/.

ir X

form load, will be

zero. In a previous

article it was shown

that in a general case

there were 2 (n — 1)

conditions for the deter-
FiG. 65. • I.- £ 1mmation oi an equal

number of integration constants, and in this case there is

the additional condition that -^ = when x = l^ which
ax

may be used to determine jR^, since the tangent to the

curve is horizontal at the wall. Stated briefly, the con-

ditions that ?/ = at the fixed and supported ends, —^ =
ax

at the fixed end, and the 2 n equations resulting from the
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equating of the values of ^ and y under each load, will

be sufficient to completely determine the values of the

2 (9^ — 1) constants of integration, and that of the

unknown reaction at the left end of the beam.

Art. 66. Beams fixed at Both Ends.

Let Fig. %'<S represent a beam fixed at both ends and

loaded in any way. The forces which act between the

beam and the walls supporting the beam, keeping the tan-

gent to the elastic curve at the wall horizontal, are un-

known. The un-

known systems of '^'^

forces acting in

each wall may each "A/// A^f
be replaced by a y/a^ ^

single vertical

force acting up-

ward at the face of

each wall, and a

couple whose mo-

ment is sufficient

to keep the tangent

at the wall horizon-

tal. The beam,

under the action of

these forces and the

loads, may then be considered as a body in equilibrium.

From the mechanics of equilibrium of parallel forces, it is

evident that the sum of the two vertical forces acting up-

ward must be equal to the sum of the loads on the beam,

and if the moments of the couples are determined, the

values of the two vertical forces mav be found.

Fig. 6G.
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Let jKj, (Fig. 66") be the force at the left end and M2 the

force at the right end, and the moments of the couples at

the left and right ends of the beam be iff^ and M^ respec-

tively. Since the moment of a couple about any point is

constant, the moment of the couple on the left end about

a point in a section distant x from the left end is 31^^, and

the value of the bending moment for that section is

71^ Tlf" _i_ 7?
"^"^^

( ^^^® ^^^^ ^^ ^^^ moments

)

This value of il[f substituted in UI^^ = Mis the differ-

ential equation of the elastic curve for a beam fixed at

both ends. If there are no concentrated loads, the last

term of the expression for M will be zero, and when

there is no uniform load, the term containing w will

disappear. If there are n concentrated loads, there will

be ^ 4- 1 values for M^ and each expression will contain

the unknown moment M^. The double integration of the

n-\-l equations will bring into the problem 2(?i + 1) con-

stants of integration, making 2n-{- 6 unknown constants

to be determined, as Jij, M^, R^^ and R^ are all unknown.

Noting that R^ + R^ equals the sum of the loads, and

that the moments of all the forces must be zero will give

two, the values of y and -^ being zero at each wall will
(XJC ~m

give four more, the derived values for y and — in the
(XX

adjacent expressions for M are equal for values of x

under any concentrated load will supply 2 n equations,

the required 2n-|-6 equations may be written. If the

loads are symmetrical with the middle of the beam, the

solution will be much simplified, as —^ is zero at the
dx
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middle of the beam, and R^ = R^ and M^ = M^. The

methods given are general and will completely determine

the bending moments or deflections for any restrained

beams.

Having fully determined the expression for the values

of M and V for any restrained beam, the shear and

moment diagrams may be drawn, and the maximum
moments as well as the inflection points determined, as for

simple beams. The value of x which makes the vertical

shear equal zero gives the dangerous section for the beam,

MO
and the formula S= ——- with the value of M a maximum

can be used for all investigations of the strength and

safety, as well as the design of restrained beams.

Art. 67. Continuous Beams.

A continuous beam was defined as one having more

than two supports.

The supports are j QOOOOOnO^i^^OO 1
assumed to be on the I ^
same level and rigid,

and the section of

the beam uniform.

fx-^ Uz i^-x->
Ajk A T
\y 2i ^-—iz—^
Hi

Fig. 67

R^ R3

nTI

T

Since there are more than two reactions, their values

cannot be determined by the laws of mechanical equi-

librium. Let Fig. 67 represent any two intermediate

spans of a continuous beam or girder, whose lengths are l-^

and l^^ and the loads are w-^ and iv<^ per linear unit, respec-

tively. Let iV^, iV2' ^^^^ ^z be the unknown bending

moments at the supports, whose reactions R^, R^^ and R^

are also unknown.

The moments iV^ and iVg may be assumed to be caused

by couples acting to the left of Rj^ and to the right of R^.
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Considering the left hand span with the origin at i?^, and

X the distance of any section of the beam from i?^,

M= N^ + R^x - ^-^ (1)

and ^/^, = JSr. + R,x - ^. (2)
dx^ 2

Integrating twice and determining the two constants of

integration from the known conditions that ^ = when

X equals either or I,

£I^ = ]}^x + ^^-'^-^-\-a (3)
dx 2 6

and ^1/=^ +^-'-^+ C,x + C„ (4)

(7„ equals zero and C. =-J-J- Li xi_,
^ ^ ^ 24 2 6

Substituting this value of 0^ in (3),

^/^ = iV^ :r 4-^^ _ ^-M? + !^ _^ _ ^?iZl rs'-v

dx ^ 2 624 2
6*^"^

If we take the origin at R^, and consider the right hand

span, remember that the sum of the moments of the forces

acting to the right of any section is the same as the sum

of the moments of those acting on the left of the same

section but with the opposite sign, and let x be any dis-

tance in that span from R^, then

and -EI^^m^R.x-'^, (5)
dx^ ^ ^ 2

' ^ ^

the sign of the moment iVg being left unchanged, as its

value and real sign are unknown.
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Integrating this expression twice and determining the

constants of integration from the known condition that

y= when x equals either or l^, we have

dx ^ 2 6 2^ 2 G ^ ^

and

ETtJ = 3-^
_[_

-^3-^ ^2^
_[

'^2^2 ^ iV3^2'^' -^3^2 "^ /'7\

^ 26 24 24 2
6*^^

The values of -^ in (3') and (6) are equal, for x = Lm (^')
dx

and x = l^\n (6), (3') reduces to

\dxr='' 2^3 8 ^ ^

— Ei(^\ = ^^^
I
^^ ^^^ r6'^

\dxJ--^^ 2 3 8 ' ^ ^

From (1), iHf= JST^ when :r = Z^

whence M= JSr^ = ]V^-{- R^\ - '-^,

and ^ _ -^2~-^i _|_ !^^ /3^

(-J
^

Similarly, from (5), 3/= iVg when a; = Zg

and j^ _ -^2 ~ -^3 _ !M2.^ /'9^

Equating (3'^ ^i^d (6') and substituting the values R^

and jRg from (8) and (9), and reducing, we have

N^l, + 2 NSi + h) + N,l, = - "'/i' + ^iV
, (10)

which gives the relation between the unknown bending

moments iV^, N^^ and iVg, and the uniform loads iv-^ and w^.
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One equation similar to (10) may be written for any three

consecutive supports, and if n is the number of the sup-

ports, n— 2 such equations may be written.

When the ends of the beam are merely supported, the

moments are iVj, JV^ . . . I^n^ and the values of iV^ and iV„

are each equal to zero, so that the n — 2 equations that

may be written will completely determine the values of

the ?i — 2 unknown moments.

When both ends of the beam are to be fixed, the two

dy
additional conditions that — = at either end support,

ax

will furnish two more equations that will be sufficient to

determine the unknown bending moments at the end

supports.

When the values of the bending moments at the supports

are determined, the reactions at each support may be found

by the use of equations similar to (8) and (9).

When there are concentrated loads on each span, the

discussion is complicated by the fact that there are two or

more forms for the equation of the elastic curve for any

span instead of only one, bringing into the problem two

constants of integration for each concentrated load.

di/
Noting the additional conditions that the values of -^

dx

and ^ where two equations meet at the point of application

of any concentrated load are equal for the value of x at

that point, it is simply a question of algebra to find the

relation between the three moments.

The expression as given in equation (10) is known as

the Theorem of Three Moments and was published in 1857.

Knowing the reactions and the loads, the shear and

moment diagrams may be drawn as for simple beams.
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The maximum bending and shearing stresses may be

found by using the maximum values of M and V in the

Mc V
fundamental formulas S= -— and S=—.

I A
The maximum bending moments occur where the shear

passes through zero; hence, by writing the expression for

the vertical shear and equating it to zero, the position of

the maximum moment may be found and its magnitude

determined from the equation for the bending moment.

Equating the expression for the bending moment to zero

will give the point of inflection. The caution given before

may well be repeated here :

'' When suhstituting the value of x which renders the verti-

cal shear zero to determine the value of the maximum bending

moment^ substitute in the particular expression for the value

of M that applies to that portion of the beam, and tvhen

equating the expression for M to zero in order to find the in-

flection points, the expressiofi which applies to that portion

of the beam must be used.^''

As was the case with overhanging beams, the inflection

points and the points of zero shear may be approximately

located by inspection of the moment and shear diagrams.

The maximum stress in a continuous beam with a num-

ber of equal spans may be less than the maximum stress

for simple beams for the same spans ; hence, when using

continuous beams care must be taken to insure that all

the supports are on the same level and practically rigid,

otherwise the maximum stress may be greater than for

a number of simple beams. Take the case of two equal

spans with a uniform load of w lb. /ft. If the beam is

truly continuous, that is the supports on the same level

and practically rigid, the maximum unit stress is, — \ ivl^.
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This is numerically equal to the maximum moment in a

simple beam of the same span.

Suppose the middle support of the continuous beam to

sink so that there is no reaction, then the maximum
moment is ^ w 4:1^ = ^ wT?^ instead of \ wP, or the unit

stress will be four times as large as for the simple beam.

As the deflection of beams as used in engineering

structures is a very small quantity, the stress may easily

approximate this maximum value when the supports do

not remain precisely at the same level.

EXAMINATION

What is meant by the expression, "the elastic curve of a

beam"?
Derive the differential equation for the elastic curve of

any beam.

Name all the conditions that must be satisfied if the

use of the equation will give results that are approximately

correct.

What is the " deflection " of a beam ?

Show how the differential equation of the elastic curve

may be used to determine the maximum deflection for any

beam.

Prove that if the loading of any simple beam is symmet-

rical with the middle of the beam, -e^ = at that point.
ax

Why is it that when there are n concentrated loads on

a beam, the expression for the bending moment may take

-^4-1 different forms ?

Show that the maximum deflections of simple and canti-

lever beams rectangular in section, and uniformly loaded,

vary as — and —3.

What is a restrained beam ?
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Why is it that the laws of mechanical equilibrium can

not be used to determine the reactions for restrained

beams?

Explain how the differential equation of the elastic

curve may be used as an aid in the determination of the

reactions for restrained beams.

Explain how to find the maximum bending moment
for any restrained beam.

Will the maximum bending moment and the maximum
deflection always be found at the same point in the beam ?

State under what conditions they will be found at the

«ame point.

What is a continuous beam ?

State the various steps in the method used in deriving

"the equation known as " the equation of three moments."

Write " the three-moment equation " for a continuous

beam with equal spans and a uniform load on each span.

Show how to find the reactions for a continuous beam
after the equation of three moments has been found.

Show that in the case of a continuous beam uniformly

loaded the maximum unit stress may accidentally be greater

than the maximum unit stress for a number of simple

beams, one for each span.

When the size of a beam for a given span has been

found on the assumption that the beam was to be fixed at

l)oth ends, it is necessary to take precautions to preserve

the restrainment. Why ?

Show that in any uniformly loaded beam, simple,

restrained, or continuous, if l^^is the vertical shear on the

right of any left hand support, and JV is the bending

moment at that support, the maximum bending moment
T^

in that span is ilSfJ^iax. = iV4- -— , in which w is the uniform

load per inch.
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PROBLEMS

1. Show that if the depth of a rectangular beam of

uniform strength is constant, the elastic curve is a circle.

S c • •

SoLUTiox. We have the relation _ = _, from which r is constant
E r

when c is constant, but c=-; hence, r is constant and the curve a.

circle.

2. Show that if a simple beam carries two equal loads

at equal distances from either end of the beam, the elastic

curve between the loads is a circle.

3. A simple beam BO ft. long carries a uniform load

of 160 lb. /ft. The beam is 4 in. wide and 6 in. deep.

Modulus of elasticity 1,600,000. Required, the inclina-

tion of the beam with the horizontal at the supports.

Solution, Find the value of -^ from the differential equation
dx

of the elastic curve
;
put x = and solve.

4. Find the maximum deflection for a simple beam,

length Z, modulus of elasticity E, moment of inertia Z,

loaded with

(^) a uniform load of iv lb. /in.

(6) a single load P at the middle.

Solution for (a). The expression for the bending moment

at any section of the beam is M = R^x — and B^ = ^', hence

EI —- — is the differential equation of the elastic curve for

this beam.

Integrating,

£:/^ = '^ - ^' + C; but^ = when x = K therefore C = - ^';
f/x 4 6 dx 2 24'

1 u i'i i- -i. 1 -m dii idx- wx^ id^
and substitutms: its value. El ^^ = .

dx 4 6 24
Integrating again,

£:/y = !^^ _ EZ! _ !^ + C, ; but as V = when x = 0, C, = 0, and
12 24 24 ' 1 '

the equation of the elastic curve becomes 24 Ely = 2 idx^ — wx"^ —wl^x^
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Equating the expression for -^ to zero, we find that x = --, — .365/,
dx 2

and 1.365 L The latter values have no meaning for this problem, and

?/ is a maximum when x = -. Substituting this value for x in the

expression will give the value of the maximum deflection.

5. Find the maximum deflection of a cantilever beam,

length I inches, modulus of elasticity U^ moment of

inertia /, loaded with

(a) a uniform load of w lb. /in.

(5) a single load at the end.

Solve by taking the origin at the w^all and measuring x toward the

free end, and also at the free end of the beam.

((?) a single load P, at a distance kl from the wall.

Suggestion for (c). For any section on the left of P, M = 0',

hence that part of the beam is straight. The value of -^ for x = kl
dx

gives the slope of the straight portion. When the deflection under

the load is known, the deflection of the end of the beam may easily

be found. Take the origin at the wall.

6. A steel cantilever beam rectangular in section is

18 in. in length, and is to carry a load of 1000 lb. at

the free end, and deflect .36 in. under that load. The
unit stress may be taken as 30,000 Ib./sq. in. Find

the size of the beam.

7. A beam fixed at one end and supported at the other

is I in. long and carries,

(^a^ a uniform load of w lb./in.

(5) a single load P at the middle
;

find the expressions for,

(1) the deflection at any point of the beam.

(2) the maximum deflection and the point where it

occurs,

(3) the maximum bending moment and where it occurs,

(4) the reaction at the supported end of the beam,

and make a sketch showing the form of the shear and

moment diagrams.
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Solution for (a). Taking the origin at the supported end let

R^ be the unknown reaction at the supported end. The value of

M at any point of the beam is 31 = R^x , as there are no con-

centrated loads on the beam, and the differential equation of the

elastic curve becomes

Integrating, £/1 = fe' _ !!|! + p. (2)

The tangent at the fixed end is zero, hence -j-= when x = 1, and

?r/3 R r^

substituting x=l \\\ (2) gives C = —; ^. Substitute this value

of C in (2) and integrate,

^^ R.x^ wx^ u'l^x RJ^x _, ,„.

This equation must be true for x = when y = 0, therefore C^ = 0.

It must also be true for y = and x = l; making y = and x — ly

(3) becomes
RJ^ wl^ id^ Rd^ ^ „ ?>id

Substituting for Cj and R^ in (3), we have

48 Ely = 3 idx^ - 2 wx^ - wl^x (3')

as the equation of the elastic curve for this beam.

The value of M was R.x , and as R, = ,

2 8

T,^ 3 ivlx WX^ ,4xM=^-—, (4)

also F = 7?j — lox — wx^ (5)
8

and from these two equations the shear and moment diagrams may
be drawn.

3 IF = for x —— ; therefore the maximum moment occurs at f /,

8

and this value of x substituted in (4) gives

, ;. _ 9 wV^
' ~ "128"*
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There will be a negative moment at the wall, and its value can be

obtained by making x = I in (4), or

X-l
g

Making M = and solving (4) for x gives

T,
, 3 Wlx WX^ rx 3 ?M = -g ~ = 0,ovx = -,

as the inflection point.

Substituting for C and R^ in equation (2) gives

j^jf^y _8 wlx^ vjx^ tcl^ o icl^

dx~~lQ tT "O l6~'

This expression is the differential coefficient of (3) ; therefore,

equating the right hand member to zero and solving for x gives the

value of X for which (3) is a maximum. This results in a cubic

equation, S x^ — 9 Ix"^ -{- l^ = 0. The roots of this equation are x = I,

.42 I, and — .298 I. The latter value has no meaning for this beam,

and x = l is a minimum; therefore the maximum deflection occurs

at a; = .42 l.

Substituting x, .42 I in (3) gives ymax. = .0054 Z as the maximum
deflection.

Suggestion for (b). There are two differential equations for

the elastic curve and the two curves have a common tangent and

common deflection for a value oi x = -.

2

8. A beam I in. long is fixed at both ends and carries,

(a) a uniform load of w lb. /in.,

(5) a single load P at the middle

;

find

(1) the expression for the deflection at any point of

the beam,

(2) the expression for the maximum bending moment
and its position,

(3) the expression for the maximum deflection and

where it occurs.

(4) Make a sketch showing the form of the shear and

moment diagrams.
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Suggestion for (b). Since the loads are symmetrical with the

P dy
middle of the beam M^ = M^ and R^ = R^ = — and -r^ = 0, when

a: = l, X = -, and x — 0.

2

9. A rectangular beam, 20 ft. long fixed at both ends

carries a uniform load of 100 lb. / ft. If the modulus of

elasticity is 1,500,000, the safe unit stress is 500 Ib./sq. in.

and c? = 4 5, find the size of the beam.

10. If the beam in 9 carried a load of 2000 lb. at the

middle, and the other data the same, find the size of the

beam.

11. Find the maximum deflections for the beams in

problems 9 and 10.

12. Draw the shear and moment diagrams for the

beams as given in problems 9 and 10.

13. If the beams in problems 9 and 10 were to be beams

of uniform strength with a constant depth, sketch the

plan and elevation for each beam.

14. Sketch the shear and moment diagrams for the

beams in problem 13, using as ordinates the unit shearing

stresses instead of the vertical shears, and the unit bending

stress instead of the bending moments.

15. Select a standard steel I beam to be used as a con-

tinuous girder for four equal spans of 8 ft. each. The

-ends are simply supported and the beam is to carry a uni-

form load of 7000 lb. / ft. Unit stress not greater than

16,000 1b. /sq. in.

Solution. As the ends are supported, N^ = N^ = and from the

symmetry of the spans and loads, iVg = N^ and i?j = R^, R^ = R^.

The three-moment equation for equal loads and sj)ans reduces to

N, + ^N, + N,=
-'-f.

(1)

Beginning with the second span,

N.-V^N. + N.^-"^, (2)
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and with the third span,

N, + ^N, + N,=
-'-f.

(3)

Since iVg = N^, (2) becomes

2N, + iN, = - 'J^, (4)

and as iV. = 0, eliminating N^ from (3) and (4), we find that

N = - —
Making N^^ = and substituting for N.^ in (1),

^ _ _ 3 wP
' ~ 28

Substitute the value of lYg i^^ equation (8) of the text, and we have

p p 11 wZ
Ti, ilr = .

^ ^ 28

In the second span, if Vo is the vertical shear just on the right of

R2, the shear at any point is F = Fg — wx, where x is the distance of

Y
the point from jRg* F is evidently zero when x = —^.

The bending moment at any point of the span is

Y2

hence Fg = itj + 7?2 ~ ^^'^*

Substituting this value of Fg in the expression for maximum mo-

ment gives as the maximum bending moment in the second span ——

.

The maximum moment in the first span is

R^x-'-^ = .077 wl\ N,= - ^, and N, = -j^,

and as the moments in the third and fourth spans are the same as

in the second and first, the maximum moment occurs at the second
Q /2 Q TTT'/

support and is , which may be written , where W is the total

load on one span.

Substituting this value of M in —^ = -, we find the value of /

as 36. ^ ^

From the tables we find that a 12 in. I beam weighing 31.5 lb. / ft.

has a value of 36, and that beam will be chosen.



122 MECHANICS OF MATERIALS

16. I beams are to be chosen to cover two equal spans

of 10 ft. each. The uniform load for each span is 5000

lb. / ft. and the maximum allowable unit stress is 15,000

lb. /sq. in. Choose a standard I beam on the assumption

that the beam is continuous. . What beam must be used

if two simple beams are used instead ?

17. Select a standard steel I beam to cover three spans

of 8 ft. each and carry a uniform load of 7000 lb./ft. The
unit stress is not to exceed 16,000 Ib./sq. in. What size

beam would it be necessary to use if each span was covered

by a simple beam ? How much weight of steel will the

use of continuous beams save ?

18. In problem 17 find the reactions at the supports for

each kind of a beam.

19. Select a continuous steel I beam to cover two equal

spans of 12 ft. each, and carry a load of 36,000 lb. at the

middle of each span. Unit stress 12,000 Ib./sq. in.

Suggestion. There are four forms of the differential equation

of the elastic curve, each two having a common tangent and deflection

at the load or reaction where they meet. The three reactions are all

unknown but R^ = R^, and there is an unknown bending moment
at i?25 the middle reaction.



CHAPTER VI

LONG COLUMNS

Art. 68. Stresses in Long Columns.

A theoretical bar under the action of axial compression

should always yield by crushing, since the resultant of

the stresses and the axial loads are in the same line. In

dealing with the actual materials and loads, the force

due to the load is not always axial, no matter how much

care is taken to make it so, and no material in common

use is absolutely uniform. In nearly every case of bars

under axial compression, there is more or less of a couple

caused by the bar not being straight and uniform in struc-

ture, or the loads not axially applied.

The effect of this couple is to produce bending in the bar.

As the amount of bending or deflection of a beam under

the action of bending forces varies directly with the cube

of the length, it is easy to see that the danger of bending

a bar under the action of compressive forces which are not

exactly axial, increases very rapidly with the length, and

also that any bending increases the moment of the axial

forces.

Experiment has proven that when the length of the bar

does not exceed ten times its least dimension, it is more

•liable to fail by crushing, than by bending and crushing

combined.

123
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Therefore, when the length of a bar under axial com-

pression does not exceed ten times the least dimension,

the formula P = AS may be used to determine the rela-

tions between the load and unit stresses.

Such a bar is called a short column or strut. When the

length of the bar exceeds this limit, it is called a long

column; and as the stress which is a combination of bend-

ing and comj)ressive stresses is not uniformly distributed

over the area of the cross section, the formula P =AS no

longer applies.

Since the amount of the bending stress in a long column

is due entirely to the imperfections of the material and the

eccentricity of the loads, there can be no strictly theoretical

formula developed for the determination of such stresses.

There are two formulas in general use expressing the

relation between the load and the dimensions of a long

column: Euler's formula for long columns, which is de-

rived from theoretical considerations, gives the relation

between the load and the elastic resistance of the column,

taking no account of the unit stress induced ; and Ran-

kine's formula, which gives a relation between the loads

and the unit stress induced, while theoretical in form,

contains an empirical constant.

Art. 69. Euler's Formula.

This is the oldest discussion of the theory of long

columns, and was offered by Euler in 1757.

He assumed:

1st, that the column was perfectl}^ straight,

2d, that the loads were axially applied at the center of

gravity of the cross section,

3d, that the material was uniform in density.
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Such a column would never bend under any load, but

would fail by crushing. To produce incipient bending he

assumed a slight lateral force to be exerted against the

column while it was under the axial load, and determined

the value of the axial load P that would heep the column

bent after the lateral force was removed.

The elastic curve of a bent column may take any one of

several forms, depending on the condition of the ends.

Art. 70. Columns with " Round "

If the ends of the column are de-

signed so that there will be no restraint

to the tendency to rotation about a

point on the end, the column is said to

have ^^ Mound " or "Pm " ends. If the

ends are rounded as in Fig. 70, it will

bend in a single curve, and the elastic

curve may be represented as in the

figure.

Taking the origin at 0, the moment
of -P about a point in any section dis-

tant X from is M = Pa — Pi/, and

the equation of the ehistic curve for

this case is

UI^=Pa- Pij.
dx^

^

or " Pin " Ends.

(1)

Multiplying by 2 dy and integrating with respect to y,

'dy\^

dii
Evidently -^ is when «/ = 0, hence C-^ = 0.

(2)
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Extracting the square root and transposing,

integrating,

^ \ 1 ay — y^

X = \ P
vers-i ^4- a

a
'2.

(3)

(4)

When a: = 0, then ?/ = a and vers"^ — = ^'
a 'Z

hence ^ = --\/-p*

Also when x = I, y = 0, and vers~i - = 0,

hence 1- '^.1^^

2 ~ 2^ P '
or P =

which gives the value of the load P that will keep a

column with round ends bent, after the lateral force has

been removed. As the deflection y has

disappeared from the expression for P,

its value is independent of the amount

of bendinof.

Art. 71. Columns with Square, Flat,

or Fixed Ends.

When the column is so designed

that the tangent to the elastic curve

at each end will be parallel to the

length of the column, the column is

said to have square, flat, or fixed ends.

A column of this type may have a cap,

which on account of the large surface

it presents, tends to prevent free bend-

ing about a point in that end, or it mayFig. 71.
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have the ends firmly imbedded in masonry. The form

that the elastic curve takes in this case is similar to that

of a beam fixed at both ends when there is a single

load at the middle of the span. Let Fig. 71 represent

a column with fixed ends as bent by the load P. The

moments that keep the ends of the column vertical being

denoted by M^ and M^, the moment due to 31^ and the

load P, at any section of the column distant x from O, is

M= M^-\rPa-Py,

and the equation of the elastic curve is

EI ^=M^-\-Pa- Py. (5)

Keducing as before and integrating,

Eli^ = 2 M,y + 2Paij-Py^ Cg, (6)

when «/ = 0, -^ = 0, and Q^ becomes zero, also when y = a^

-^ = 0, and the value of 3L is found to be •
•

dx ^
2

Inserting these values in (6), taking square roots, and

transposing,

^ Way — y^

Integrating (7), we have

^ = ^/5vers-i2i/ + t7,. (8)
^ P a

Here x = when y = a\

hence vers"i ^ = tt, and C^ = — ttv— ;

1 2 ?/
also when x = -^ V = ^i therefore vers~i -^= 0-

2
"^

a
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Inserting these values in (8), we have

- = — TT \ , or i^ = 4 1

2 ^ P V'

which is Euler's formula for columns with fixed ends.

Art. 72. Columns with Round and Square Ends.

When one end of a column is restrained so that the

tangent to the elastic curve at that end is always vertical,

and the other end is left free to ro-

tate about a point in that end, the

column is said to be one with round

and square ends.

The elastic curve will take some

such form as shown in Fig. 72.

Taking the axis of X as vertical

and the origin at the upper end of

the column, if M^ is the moment that

keeps the tangent vertical, the mo-

ment due to M^ and that of the force

P about a jDoint in any section of

the column distant x from the upper

end, is M^ M^-\- Pa — Py, and the

equation of the elastic curve becomes

EI-pi = M^-\-Pa-Py. (9)

Equation (9) is the same form as (5), and as the conditions

to be satisfied are the same with the exception that

does not become zero when x equals -, we may write

dx

EI
P

..-1^-1/

^ ^ a ^

EI
P

' (10)
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Taking the origin at the lower end of the column, measur-

ing X up from Oj, and remembering that the value of the

bending moment for one end of the column is the same as

that for the other end with the sign changed, we may
write 72

^^-i.=^^-^y' (11)

This is of the same form as equation (1) ; therefore

^[EI _, y IT [EI ..ON^=Vp-^ers ii__^_. (12)

If h and d are two such numbers that - -f- - = Z, then
d

equations (10) and (12) are equal when x = - in (10) and

I
^

a^= — in (12), and when they are equal, j/= 0.
d

Equating (10) and (12) and making ?/ = 0, we have

(V
EIit\, -.J.EI

1
.3 1 . q

6 = d\ —— TT, whence o = - and d= 6»
F 1) ^ P 2

2 I
Substituting x — ^ and ^ = in equation (10), we have

3

2? \~EI ^ ^EIiT^= -7rV-p,orP=-
3 ^ F 4: P '

as the formula for columns with round and square ends.*

* The column is not in equilibrium for this case unless a couple H-H.

(see Fig. 72) is introduced. Considering this couple and taking the

origin at the round end of the column, the equation of the elastic curve

becomes ^2,,

which reduces to P = 2^^ (nearly), instead of - ^
J^

. The approxi-

mate solution has been offered because the value of P as usually given is

4 Z2
•
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In the solution of problems by the use of these formulas,

1 is always the moment of inertia about a gravity axis

perpendicular to the direction of bending. If the column is

free to bend in any direction, the least value of I for that

section must be used. E is the modulus of elasticity, and

as the tabulated values are in inch pounds, P must be ex-

pressed in pounds and I and Zin inches. It will be noticed

that the formulas for the three types of long columns differ

onl}^ by a constant.

If the strength of a column is defined as the load it will

carry, and the strength of a column with square ends is

taken as unity, it is easily shown that the strengths are as:

1 for a column with square ends,

^ for a column with round ends,

j9- for a column with round and square ends.

Ar"^ niay be substituted for Zin the general formula for

lonsf columns and the formula written

P r'^Eir'^—-= m ,

A l^

where m has values of 1, 4, |^, according to the condition of

the ends of the columns, and r is the least radius of

gyration.

The ratio of the length to the least value of the radius

of gyration is called the " slenderness ratio " of a column,

and when this ratio is greater than 25, the column may be

considered as a long column.

If the stress was uniformly distributed over the section

p
of the column, the value of — would be the unit stress.

P
Takings — as the unit stress, m = 1, tt^ = 10, and the

I
^

ratio of - = 100, the value of aS' for a wrought iron column
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is 25,000 Ib./sq. in., which is practically the elastic limit

of the material.

If - is taken as 50, the value of jS becomes greater than
r

the ultimate strength of the material.

As the majority of columns in engineering structures

have the ratios of - from 50 to 150, it is plain that
7'

Euler's formula will not always give satisfactory results.

The results of experimental work on long columns show

that the formula can not be depended on unless the ratio

of - is nearly 200.

Euler's formula not being satisfactory for the usual

range of the values of - has led to the adoption of a
r

formula, first proposed by Gordan and later modified by

Rankine.

Rankine's modification of Gordan's formula is in com-

mon use among American engineers, while the European

engineers prefer Euler's formula or some modification of it.

If Euler's formula is used for the design of a long col-

umn, the resulting dimensions should be checked by the

formula for axial compression to determine the value of

the unit stress.

Art. 73. Rankine's Formula.

This formula is based on the assumption that the maxi-

mum unit stress in any section of a long column under

axial compression is a combination of the compressive unit

stress due to the axial compressive force and the maximum

unit bending stress due to the probable moynent of the same

force.
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Let Sc be the maximum unit compressive stress in any

p
section of a long column, S-^ = — be the unit compressive

A

stress due to the load P, S^ = ~- the maximum unit com-
I

pressive stress due to the probable moment of the axial

force, and A the area of the section of the column; then

S^=S^ + S^ ovS, = ^ + '^, (1)

from which the maximum unit stress S^ may be found

P Mc P
when — and -— are known. The value of — may easily

Mc • .

be found, but the value of —- is indeterminate, owing to

the lack of knowledge of the probable eccentricity of the

force P.

If we assume that / is the maximum deflection due

to the unknown moment M^ the value of that moment

may be expressed as Pf. AYriting Ar^ for I and making

M= Pf^ equation (1) reduces to

'^. = f(l +$} (2)

By analogy with beams where the maximum deflection

12 . p
varies as —,/may be taken as proportional to -. If (^

c e

is some number depending on the material of the column

for its value, and w is a number whose value depends on

the conditions at the ends of the column, then f = ncf)

Substituting this value of / in equation (2), we have

S, = ^fl + ncl>i\o.P=^^, (8)

e
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which is Rankine's formula for the solution of problems

relating to long columns. Since S^ is usually given in

pounds per square inch, P must be expressed in pounds,

and Z and r in inches. The value of r to be used will

•depend on the direction in which bending takes place.

If there is no external restraint to bending, the least

value of r for the section considered must be used. The

value of (j) has to be determined by experimental work

on long columns. The method generally taken to deter-

mine the value of cj) is to find by experiment the load

that will cause the column to fail, and substitute that

value for P in Equation (3). S^ is taken as the ultimate

compressive strength of the material and, as n, Z, JL, and

r are all known, the value of
(f)

can be found. The relia-

bility of the formula depends on the accuracy with which

the value of
<f)

is determined. The following table gives

the usual value of (j) as found for columns where the ratio

of - varied from 20 to 200, and therefore can be applied
^

I .

to problems where the ratio of - is within these limits.
r

For hard steel 6— 1 •
T* 2 0000'

for mild steel 9 = 3 o^o 0"0 »

for wrought iron ^— 36 00 '

for cast iron r ~ eioo"

'

for timber y ~ 3'0 0"*

The strengths of columns of the same dimensions with

•square, round, and round and square ends were found to

be in the ratio of 1, ^, and -^q respectively.

The strengths of the columns also varied inversely as P.

Let Zj, Zg, and Zg be the lengths of three columns having

(equal section areas and ends square, round, and round and
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square respectively ; then 1^ = 2 I^, where each column has

4Z
the same strength. Under the same conditions, l^ = —^'

AS .

^

Writing Rankine's formula P = ^, and making I equal

41
to Zj, 2 I^. and —^, successively, there will result a numerical

coefficient for the last term in the denominator of 1, 4, ^^-.

In Equation (3) n was a number depending for its value

on the conditions at the ends of the columns, hence n

must equal 1 for columns with square ends, 4 for columns

with round ends, and ^^- for columns with round and

square ends.

As this constant n depends on the condition of the

ends of the columns, and that condition determines the

form that the elastic curve assumes, it is evident that n

should bear some relation to the deflections of beams

having similar elastic curves.

Compare the maximum deflection of a simple beam

carrying a concentrated load at tlie middle with the

maximum deflection for a beam with both ends fixed

carrying the same load.

The elastic curve for the simple beam is similar to

that for a column with round ends, and the deflection is

four times as large as the deflection for the restrained

beam, whose elastic curve resembles that for a column

with both ends fixed. Therefore the value of n for a

column with round ends should be four times that for

a column with square ends. This agrees with the value

derived from the assumptions of relative strengths.
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Art. 74. Applications.

In the use of Rankine's formula the value of aS'^ may be

taken as the safe working unit stress, and then P will be

the load that can be carried with safety. P is always less

than aS'^, as l + ?^0 — is always greater than unity; hence,

no matter how short a column may be, Rankine's formula

will give a safe value for P when the safe value of S^ is

used. Since n(f) is a small quantity, if the ratio of - is
T

small, 1 + ?z(/) — may be practically unity and the value of

P very nearly equal to AS^* The value of
<f)

being

derived from experiment, the formula is limited in its

use to the range in the values of - covered by the exper-
r

imental work in its determination. The values of 0, as

given, apply very well to all columns where the ratio of

- lies between 20 and 200. Above this ratio the load
r

given by Rankine's formula will still be safe, as the

formula gives the value of P too small. On the other

hand, Euler's formula gives values for P that are too

large when the ratio of - is less than 150, and the load
r

given does not agree well with practice till the ratio ap-

proaches 200.

The forces producing tensile, compressive, and bending

stresses are all determinate, and the results given by the

formulas for these stresses agree very well with those de-

termined experimentally. The formula for the maximum
unit stress in a long column contains the effect of an in-

determinate bending moment, the actual stress depending

on the magnitude of that moment. As no general assump-
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tions can be made as to the probable value of the moment,

the allowable working stress in long columns is always

taken less than for the same materials under other forms

of stress. Many other formulas, some of them entirely

empirical and others more or less theoretical, have been

proposed, but none have come into general use. For a

full discussion of the various formulas the student is re-

ferred to "Text-book on the Mechanics of Materials,"

Merriman.

Cast iron columns are common in engineering work

on account of the large compressive strength of the

material. As long as the unit stress due to the bend-

ing does not equal the unit compressive stress due to

the load there is no tensile stress in the column. The

columns are generally made hollow and round in section.

Wrought iron and steel pipes are also often used for

columns. The values of / or r may be found as soon

as the internal and external diameters are known.

Rolled steel shapes, in channel and I beams, are

joined together by plates, which are riveted to them,

and used as columns. Timber is used in the solid

section and in the hollow box section. In the case of

circular sections the value of I is the same for bending

in all directions. When the column is " built " up, as is

the case when the rolled steel shapes are used with tlie

joining plates, the spacing should be such that the

values of / for the " built " section will be equal about

the two principal axes. The same is true of the wooden

box sections. For the rolled steel shapes the value of

I for the gravity axes of the rolled section, parallel and

perpendicular to the web, are given in the tables, and

must be transferred to parallel axes passing through the
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center of gravity of the built section. For the sections

where the elements are rectangular the value of the

gravity moment of inertia is ——, where d is the dimension

perpendicular to the axis.

Although it involves considerable arithmetical and al-

gebraic work, the process of determining the values of /
for the "built" sections is simple.

Given the moment of inertia of any area about an axis

passing through the center of gravity of the area, as /^, the

moment of inertia of the area about any parallel axis, dis-

tant A, is / = /^ 4- Ah^.

Having transferred all the gravity moments of inertia

to a set of axes passing through the center of gravity of

the built section, the sum of the moments with reference

to either axis should be equal, and in case they are un-

equal, the least value should be chosen for use in the long

column formulas.

EXAMINATION

Explain why the formula P = AS does not give results

that agree with experiment when the bar under axial com-

pression is very long.

Define a Long Column.

What assumptions were made when the formula

P = m—-— was derived ?

What is meant by the expression " a column with round

ends"? "a column with square ends" ? "a column with

round and square ends " ?

Derive Euler's formula for long columns with square

ends ; with round ends.

Explain why the formula as derived for columns with

round and square ends is approximate.
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Explain why the use of Euler's formula for long

columns does not always give satisfactory results.

Give the conditions under which the use of Euler's

formula for long columns will give satisfactory results.

State the assumptions that were made for the deriva-

tion of Rankine's formula for long columns.

Derive Rankine's formula for the strength of long

columns.

State the meaning of each symbol and the units to be

used in making substitutions in the following formulas

:

P Er^iT^ ^ P S.
and —r =A Z2 ^ 72

1 + ^^*;:^

Does Rankine's formula for long columns give results

that are more reliable than Euler's ? Why ?

On what does the reliability of Rankine's formula

depend ?

Me
The formula S = —- was used in the derivation of

Rankine's formula for long columns. Does this fact limit

the use of the formula to materials which satisfy the con-

Mc
ditions for the use of the formula S = —-?

Show by the use of Euler's formulas that the strength

of a column with square ends being taken as unity, the

strength of a column of the same size with round ends is

J and that of a column with round and square ends is -^^.

Explain why the value of n in Rankine's formula is

1 for a column with square ends

4 for a column with rounds ends, and

^^- for a column with round and square ends.

Show that Rankine's formula applied to the solution for

any column, no matter how short, will always give a safe load

for that column. Is the same true for Euler's formula ?
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Is there any limit to the length of a column to which

Rankine's formula will apply?

Why is the ratio of - used as limiting the use of

either formula ?

If the section of a column is a rectangle having one

side 4 in. and the other 6 in., find the values of I and r

to be used in the formulas for the strength of long

columns.

Why will a hollow cylindrical form make a stronger

column than a solid cylinder of the same section area ?

Given the moment of inertia about an axis through the

center of gravity, how can you find the moment of inertia,

of the section about an axis parallel to the gravity axis ?

PROBLEMS

1. A wooden column 10 ft. long is rectangular in sec-

tion and has round ends. The sides of the rectangle are

6 and 8 in. respectively. What is the maximum load the

column will carry?

Find the safe load. (Use Euler's formula.)

Solution. The formula is P = ?I^, I=^-^=^2^=UX
^' 12 12

since the least moment of inertia must be used.

E may be taken as 1,500,000 and tt^ used as 10. I = 120 in.

Substitutino',

P = 1.500,000 X U4 X 10 ^ ^ ^^^
14,400

This is the greatest load that can be carried without failure by
bending. The corresponding unit stress due to the axial force P is

— = /"— = 3130 Ib./sq. in., or a stress about one half the ultimate
yl 48
strength of the material. In order to carry this load the column
must be straight and the load axial. As these conditions are rarely

ever satisfied, a factor of safety of at least 5 should be applied to the

result. Using this factor, the safe load is 30,000 lb. and produces an
axial unit stress of approximately 600 Ib./sq. in., which has a fair

margin for safety.
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2. If the column in problem l was cast iron and had
square ends, determine the maximum load it will carry

and the unit stress induced by that load. Is it possible

for the column to carry the load ?

3. Show that a cast iron column with square ends must

have the ratio of - approximately 90 in order that the
r

axial unit stress corresponding to the load P in Euler's

formula shall be less than the ultimate compressive

strength of the material.

4. If the axial unit stress produced by a force equal to

the value of P as derived by Euler's formula is equal to

the elastic limit of mild steel, find the ratio of _ for the
r

column. Consider the ends round ; square ; and round

and square.

5. A standard 12 in. I beam weighing 35 lb. /ft. is

to be used as a column with round ends. The length is

10 ft. What load may be carried Avith a factor of safety

of 5 ? If there should be a factor of 5 used with the

formula for axial compression, is the load given by Euler's

formula safe ?

6. A cast iron column 20 ft. long has a hollow cir-

cular section. The external diameter is 10 in. and

the internal diameter is 8 in. Determine the value

of the maximum load that can be carried, if the allowable

unit stress for axial compression is 4000 Ib./sq. in.

What will be the factor of safety against failure by bend-

ing? (Column has square ends.)

7. Solve problem 1 by the use of Rankine's formula.

Solution. The formula isP = ^-t^-? -<I = 48 sq. in., <^ = .-

I 144
Sc = 10,000 lb. / sq. ill. for a maximum load, r^= — = -— = 3, / = 120
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X

«-3-^ <-3'-

in. Therefore -^= 4800, and substituting these values,

P= ^8x10,000 ^65 000 1^,

1 + 3 0% 4800

Comparing the results obtained from the solution by the two

formulas, we see that the allowable load from the former is about

twice that obtained by the use of Rankine's formula. Therefore a

factor of safety of 5 on Rankine's formula is equal to using a factor

of 10 with Euler's formula.

8. Find the size of a circular wooden column 12 ft.

long to carry a load of 50 tons with a unit stress of

1200 lb. /sq. in. Column has square and round ends.

9. A wooden column 15 ft. long

has a box section as shown in the

figure. Find the value of x so

that the column will carry the

greatest load possible.

10. If the safe unit stress for

the column as given in problem ~^»
-,f

9 is 1000 Ib./sq. in., find the safe Problem 9.

load for the column.

11. Two standard 12-in. channel beams are to be used

for a column. The channels are to be placed as shown
in the figure and

I I
joined by lattice

work. If the mo-

ment of inertia of

the lattice work is

neglected, find the

distance between the

channels so that the

column will carry the largest load possible. The column

is to have square ends.

12. If the safe unit stress in the column given in

problem 11 is 12,000 Ib./sq. in., find the safe load.

«M

_^L

Problem 11.
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13. A cast iron column 20 ft. long has a hollow cir-

cular section. The internal diameter is 8 in. and the

external diameter is 10 in. Required the load that may
be carried when the maximum unit stress in the column

does not exceed 4000 Ib./sq. in. (the column has square

ends). Compare the result with that obtained from

problem 6.

14. The connecting rod for a steam engine has pins at

either end that are parallel to each other. When bend-

ing tends to take place in a direction perpendicular to

the axis of the pins the rod acts as a column with round

ends. When the bending tends to take place in a plane

through the axis of the pins the rod becomes a column

with square ends. If the section of the rod is rectangular,

find the relation between the depth and breadth, so that

the column may be equally safe against bending in either

direction. (Use Euler's formula.)

15. A cast iron column 20 ft. long has a hollow circular

section 12 in. outside diameter. The allowable unit stress

is 10,000 Ib./sq. in. and the load is 50 tons. Required

the inside diameter of the column. Consider the column

to have square ends.

16. A standard 12-in. I beam 40 ft. long has braces

along the web that prevent bending in a direction perpen-

dicular to the web. If S^ is 12,000 Ib./sq. in., find the

safe load for the column. Column has square ends.



CHAPTER VII

COMBINED STRESSES

Art. 75. Stresses due to Force.

When a force acts on any material, more than one

kind of stress may be produced in any fiber of the mate-

rial. In the previous chapters it was assumed that only

one kind of stress resulted from the application of the

force, and the magnitude of the stress calculated on that

assumption. While this latter condition may be true

in some cases, the force acting on a bar often produces

two or more kinds of stress. These stresses when com-

bined may result in a maximum unit stress greater than

either of the original unit stresses. Any fiber of a beam

has a tensile or compressive unit stress due to the bend-

ing moment, and a unit shearing stress due to the ver-

tical shear. A shaft carrying a pulley between two

supporting bearings is a beam and a torsion bar combined.

Each fiber has a unit stress due to the bending, a unit

shearing stress due to the vertical shear, and a unit

shearing stress due to the twisting moment transmitted

through the shaft.

Art. 76. Tension or Compression combined with Bending.

When a bar is subjected to a force whose line of action

is parallel to the axis of the bar, it was shown that this

force could be replaced by an axial force and a couple.

143
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The axial force produces either tension or compression,

and the couple both tension and compression. In such

a case, an approximate solution for the problem of finding

the value of the combined stress is obtained by com-

bining the tension or compression resulting from the

couple, and the tension or compression due to the axial

force. Let /S'j be the maximum unit stress due to both

sets of force, S be the unit tensile or compressive stress

resulting from the axial force, and Sf, the tensile or com-

pressive unit stress due to bending, then S^ = Sf, + S,

Me P
where S^, =—- and 'S = — are both tensile or compressive

stresses.

When the axial force is a tensile force, the maximum
stress found in this way is too large, as the axial force

on the bent beam produces a moment Pj/ that tends to

reduce the bending moment of the flexural forces. See

Fig. 76. When the axial force produces compression,

the moment Py of the axial force tends to increase the

bending of the bar, and the approximate solution gives

the resultant unit stress too small. As the error is due

to the moment P^, when the deflection is small the

error is also small. While the engineer as a rule desires

to be as nearly accurate in his calculations as possible,

when the approximate formula is simple and errs on the

side of safety, it is often used in preference to the more

exact and complicated formula. A bar is often designed

to resist a combination of compression and bending stress

by the use of the approximate formula, but when this

is done the resulting dimensions should be used in a more

exact expression and the actual unit stress determined.

Let Fig. 76 represent a beam under the action of

flexural and axial forces. Let 31 be the maximum mo-
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Fig. 76.

ment of the flex-

ural forces, P an

axial force which

may be either

tensile or com-

pressive, /j the

maximum deflec-

tion of the beam.

If M-^ and S-^ are the maximum bending moment and

unit stress due to the sum of the moments M and Pfj,

then S^ = —^ = ^^ '^'^^
, the positive sign being used

whenP is a compressive force, and the negative sign when

P produces a tensile stress. By analogy with beams

under the action of flexural forces only, the value of

/j may be assumed to be f^ ^Ec
, and the substitu-

tion of this value in the equation for S^ gives

S,=
Mc a S^FP
I ^ (S EI or S-^ =

Mc

I± aPl^

/8 E
PThe maximum unit stress is S. -\- —-= S\ where S. has

^ A ^

the value as just found. S is either tension or compres-

P
sion, depending on the kind of stress represented by —•

The values of a and ^ for various kinds of beam and

loadings are given in the appendix. There are no values

that apply strictly to this case, as the bending moment

is increased by the value of the moment Pf^ Since

/j is a small quantity, the error made in assuming that

the values of a and /3 are those found for beams under
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flexural forces only is very small, hence a and y8 will be

determined by the kind of a beam and the nature of the

loading. The unit stress due to the effect of the two

moments is
jy£^

S^ = -

i±

while that due to the flexural forces only is Sf, — —-
The difference is -pn^

ifI -^^'^
"

^ E^

This difference divided by the value of S-^ and multi-

plied by 100 is the percentage error in the bending unit

stress when S^, is used instead of S-^. The value of this

error is ± -——- 100, from which the per cent of error may
EI13

^ -^

be easily found. As the amount of the error depends

directly on the value of P, and inversely on E, Avhen P
is small, and E large, the error will be so small that it

may be neglected. The error also varies directly as P;

therefore it is more liable to be serious when I is large.

For a timber beam 20 ft. long, 6 in. wide, and 12 in.

deep, carrying a load of 8000 lb. at the middle and at

the same time a compressive load of 45,000 lb., the use

of the approximate formula will result in an error of

approximately 8 per cent.

For a steel I beam, 10 ft. long, having a moment of

inertia of 122, a concentrated load of 6000 lb. at the

middle and an axial compressive force of 20,000 lb., the

values of jS^ and S(, differ by less than one per cent, an

error too small to be taken into account.
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Art. 77. Roof Rafters.

The common roof rafter is an example of a beam under

tixial and bending forces. As a part of a truss there is some

compression in the rafter, and the weight of the roof and the

probable snow load produce both bending and compression.

Let Fig. 77 represent a roof rafter, length I in., carry-

ing a uniform load of w lb. in. The rafter is in equi-

librium under the horizontal forces H^ and H^, V act-

ing vertically at the

wall, and the uniform

load. Taking mo-

ments about a point at

the foot of the rafter,

H^ sin (^= — cos (^,
Li

from which

The bending mo-

ment of the force

H^ about a point in a section distant x from the upper end

of the rafter is H^x sin 0, while that for the uniform loads

Fig. 77.

on the left of the same section is

stress due to the bending forces is
2

cos <^. The unit

o _ Mc_ (^Hx sin ^ —\ icx^ cos <^) c

\-Y J
•

The compressive force on the same section is ff^ cos (p due to

wx
the force If,, and — sin <b, due to the uniform loads on the

section. Hence the total compressive stress in the section is

P _ (ff cos
<f> + wx sin (^)
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Using the approximate formula, the maximum unit

stress is

^^, P
, ri (^cos (f) + z^'x sin <^) (Hxsind) — I wx^ cos (j))c

•^=1 + '^'
=

A
+

1
•

— cot (j) may be substituted for IT and the value of x that
Li

makes S a maximum found. Using this value of x^ the

value of the maximum unit stress in the rafter may be

calculated. If the rafter carries a single concentrated load

at the middle, the maximum compression and bending

stresses occur at the middle and the maximum stress is

easily found.

When there are several concentrated loads on the rafter,,

the greatest unit stress will have to be found by trial.

The compression between any two loads is constant; there-

fore, the maximum unit stress between any two loads will

occur at the point of maximum bending moment between

tlie loads. The maximum stress in several sections may
have to be found to determine the greatest unit stress in

the rafter.

Art. 78. Eccentric Axial Loads.

When a beam is to resist axial as well as flexural forces,,

it is nearly always possible to make the point of applica-

tion of the axial force so that the moment about a point in

the neutral axis of the mid-section of the beam will be

equal and opposite to the moment of the flexural forces.

If P (Fig. 78) is an eccentric axial force, and y is the dis-

tance of its point of

application above or

below the neutral

plane, then before

any bending takes-

^
i";:H^-^ -.-€ -e-

j\.

Fig. 78.

> ^
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place Py is the moment of the axial force about a point in

the center of the beam. Let M be the maximum moment

of the flexural forces ; then if the axial force is compression

and the distance y measured below the neutral plane has

such a value that M= Py^ the resultant bending moment

will be zero. Similarly, when the axial force is tension,

if y is measured above the neutral surface and its value

taken so that Py = iHf, the resultant bending moment will

also be zero.

T<r-

Art. 79. Shear and Axial Stress.

When a bar which is subjected to an axial stress is

acted on by forces at right angles with the axis, there are

tensile or compressive and shearing stresses at every point

in that bar. Let Fig. 79 represent an elementary cube

cut from any
portion of the A^V

bar at which

there are tensile

or compressive

stresses par-

allel, and shear-

ing stresses

perpendicular to

the axis. The tensile or compressive forces T^ and T^^ act

on opposite sides of the cube, and the shearing forces Fj

and T^ on parallel faces. Since they differ only by

differential quantity, T^ = T^ and J\ = T^. The cube is

not in equilibrium unless a pair of equal shearing forces

^j, H^ are introduced. As the cube is in equilibrium and

the arms of the couples are equal, it follows that V= H.

Since the elementary block was a cube, the unit stresses

Fig. 79.
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due to the equal forces H and V must be equal. Hence

at every point of the bar there exists a pair of equal

unit shearing stresses at right angles to each other, in

addition to the unit tensile or compressive stresses. The

tensile or compressive and shearing unit stresses that exist

at every point in the bar combine and create shearing and

tensile or compressive unit stresses that are greater than

the original unit stresses.

Akt. 80. Maximum Stresses.

To determine these maximum stresses let Fig. 80 repre-

sent an elementary parallelepiped cut from any portion

of the bar.

Let its length be dx^ height dy, width unity, and the

faces be parallel and perpendicular to the axis of the bar.

The area on which the

tensile or compressive

forces act is dx times

unity, while that on

which the shearing forces

act, is either dy or dx

times unity. The forces

that act on opposite sides

may be considered to be

equal since they differ by an infinitesimal quantity. Let

aS'^ be the unit shearing stress and S the unit tensile or

compressive stress. The force that acts perpendicular to

the dy face is Sdy and the shearing force in the same

plane is S^dy. The shearing force in the dx face is S^dx.

Let ds be the diagonal, (^ the angle between dx and dz^ S„

the unit stress perpendicular to dz, and Sp the unit shear-

ing stress along dz. Resolving the forces that act on

Fig. 80.
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either side of dz into components parallel and perpendicu-

lar to dz we have

Spdz = S dy cos
(f)
+ S^ dx cos (/> — S^ dy sin 0, (1)

Sn dz = Sg dx sin
(f)
+ S dy sin </> + Sg dy cos

(f>. (2)

Divide each of these equations by dz^ make -^ = sin cj) and

— = COS (^, and equations (1) and (2) reduce to
dz

Sj^ = S sin
<f)

cos (fi-h Sg (cos^ <^ — sin^ c^), (3)

Sj^ = S sin^ (^ + 2 aS'^ sin
(f)

cos (^. (4)

Writing the equivalents of sin </> and cos (j) in terms of

2 </), we have q
S^ = ^ sin 2 (l>+S, cos 2 </>, (5)

^^ = I (1 _ cos 2 (/)) + aS' sin 2 0. (6)
Li

By the usual process

aS'^ is a maximum when tan 2 (f)=
—^ '

jSp is a maximum when tan 2 ^ =

aS'

2S'

Substituting these values of cf) in equations (5) and (6),

laximum values of /S^ a]we find that the maximum values of jS^^ and S^ are

In these expressions S,^ and aS' may be either tension or

compression. When the positive sign is used before the

radical, aS'^ is the same kind of stress as aS'. When the

value of S^ is obtained by using the negative sign before

the radical, aS',^ is compression when aS' is tension, and vice

versa. When there is no shearing stress, aS'^ = and the
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value of aS'^ is S, while the value of S^ is ^ S. For Ss=
the tan 2 (/> = oo or (/> = 45°. </> is the angle between the

directions of the tensile or compressive unit stresses and

the plane on which the maximum stress acts, hence the

maximum S^, makes an angle of 45° or 135° with the direc-

tion of aS'. Tlie angle that S^ makes with S under the

same conditions is the tan"^ <^ = 0. This latter expression

P . .

shows that S = — will s^ive the maximum unit tensile or
A

compressive stress in a bar on which there are axial forces

only.

These formulas are general and apply to all combina-

tions of tensile and compressive with shearing stresses

without regard to the nature of the force producing the

stresses.

When the unit stress S is induced by axial forces, the

p
value of aS' = —

-. The stress S may also be due to a bend-

ing moment, and in that case the value of aS' is taken from

S = -— . aS'^ may be due to a simple shearing force or the

result of a twisting moment.

In the former case the value of aS'^ to be used is derived

P PVG
from aS', = — , and in the latter case aS', = —^. When

A J
the bar under axial forces is a long column, Rankin e's

formula for long columns must be used to find the value

P f P\
of aS'. This formula may be written aS' = — f 1+ m(f)—U

from which the value of aS' may be easily found.

Art. 81. Horizontal Shear in Beams.

There is a tensile or compressive unit stress in every

fiber of a beam that is equal to aS' = —- and at the same
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time a unit shear-

ing stress resulting

from the vertical

shear. When the

formula V=ASg_
was derived, it was

assumed that the

shearing stresses

were uniformly

distributed over

the section of the

beam. In the pre-

vious article it was

shown that there was a pair of shearing stresses at right

angles to each other.

Therefore in any beam there is also a horizontal unit

shearing that is equal to the vertical unit shearing stress

at all points of the beam. To deduce an expression for

the horizontal unit shearing stress at any point of a beam

imagine a parallelopipedon cut from the top half of any

beam (Fig. 81).

Let the length be dx^ the width 5, the distance of the

lower side from the neutral axis ^j, and the distance of the

top of the beam from the same axis c. The faces are to

be taken as parallel and perpendicular to the axis of the

beam.

There are compressive forces acting on each end of the

elementary block which vary in intensity directly as their

distance from the neutral axis. Let aS' be the unit com-

pressive stress at the upper surface, and dA a differential

area at any distance 7/ from the neutral axis; then — i/dA
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is the force acting at the distance y from the neutral axis.

The sum of the horizontal forces acting on either end of the

elementary block is the sum of the compressive stresses

acting on the same area. Calling this sum H— — I ydA^MS M C ^ ^^

and writing — for —, we have H = —- \ ydA. Let the
I e I'^yy

bending moments at the ends of the block be M^ and

M2, and the sum of the compressive stresses on the same

ends be H^ and H^. Since the ends are separated by

dx, M^-M^= dM; then H^- H^ =^C ydA. For
I ^y^

equilibrium a force equal to H^ — H^ must be introduced,

and this force must be equal to the sum of the shearing

stresses on the area dx times h.

This sum is a horizontal shearing force, and the unit

stress is —\- ^. Therefore if Sf^ is the horizontal unit

dM C
shearing stress, Sj^ — ———

- I ydA. From the theory
dx lo^yi

of beams Vdx = dM ov —— = V. Substituting j^for —

^

dx „ ^^ cix

in the expression for Sf^^ we have aS'^ = —-

J
ydA as the

value of the unit shearing stress at a distance ?/j from

the neutral axis.

The parallelopipedon could have been cut from the

lower half of the beam where the stress is tension and the

reasoning would be equally true. The formula gives

the value of the unit shearing stress at a distance y^ from

the axis, in a section for which Vi^ the vertical shear as

defined in the chapter on beams. The width of the beam

at a distance y-^ from the axis is 5, /is the moment of inertia

of the entire section, while I ydA is the static moment
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of the area of the section lying above the distance y-^ from

the neutral axis. If c^ is taken as the distance of the

center of gravity of the area above y-^ from the neutral axis

ydA = a^c^^ and Sf^ = —- a^c^.

^1 10

For a point yi= c from the axis, a^c-^ = 0, and therefore

aS'^^ = at the distance e from the neutral axis. When a^

is the whole area above the axis, Sf^ will be a maximum for

that section. The greatest value of SJ^ for the beam will

be found at the neutral surface in the section where the

vertical shear is a maximum, since the value of aS'^ varies

directly with F! Similarly, there will be no horizontal

unit shearing stress in the sections where T^= 0. It has

been proven that for any point in a section of a beam

there was a horizontal unit shearing stress that was equal

to the vertical unit shearing stress at the same point.

The expression just derived for Sf^ shows that the hori-

zontal unit shearing stress is a variable quantity in any

section of the beam, therefore the vertical unit shearing

stress must also be variable. For a rectangular section,

breadth 6, depth d, the value of aS'^ for any section is

- -— instead of S^ = —-, showing the maximum horizontal
2od od

shearing unit stress, and therefore the maximum vertical

unit shearing stress is 50 per cent greater than the assump-

tion of uniform distribution of stress would indicate. In

determining the conditions for the safety of a beam, if the

Mg
unit stress derived from the formula S = —-- is a safe

stress, the beam will in most cases be safely loaded.

When a beam is short and deep, the horizontal unit

shearing stress along the neutral surface may exceed the
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safe unit shearing stress. This is especially true of

timber beams on account of the low value of the ultimate

shearing strength of timber along the grain. Hence the

value of the shearing stresses should always be investi-

gated, as no beam is known to be safely loaded until the

unit stresses of all kinds have been determined and found

safe.

Art. 82. Maximum Stresses in Beams.

In the general theory of beams as presented in Chap-

ter III, the shearing stress due to the vertical shear was

assumed to be uniformly distributed over the area of the

section of the beam. That this assumption was not

strictly true is evident from the equality of the variable

value of the horizontal unit shearing stress with the unit

vertical shearing stress in the same section. The value

of jS,^ being a maximum or zero, as V is a maximum or

zero, shows that aS'^^ is zero when M is a maximum, or that

there are no shearing stresses in the section for which M
Mc

is a maximum. The value of S as derived from aS^ = —-

will, therefore, be the true unit stress for any section

where itf is a maximum bending moment for the beam.

The shearing stresses in the fibers along the upper and

lower sides of the beam are also zero, since a^c^ = 0.

Hence the unit stresses in these fibers at the various sec-

tions of the beam will be the value of S -ds, derived from

-— , when M is the bending moment for the section con-

sidered.

The unit tensile or compressive stress being zero along

the neutral surface, the unit stress along that axis is one
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of shear, and its value may be found from the expression

for Sf^. For simple beams 31 is zero at the supports

and the unit stress at all points of the section is simply

With these exceptions the unit stress at all points in

a beam is a combination of the tensile or compressive

stresses with the shearing stresses. The value of the

maximum unit stress at any point in the beam may be

found from the expressions for the maximum values of

aS'„ or Sp^ when S/i is substituted for aS^^. These maximum
stresses make angles with the axis of the beam that

depend for their value on the relative values of S and S^.

The unit stress given by -—- is the true unit stress, when

il[f is a maximum moment, and it is easy to see by an in-

spection of the expressions for the maximum values of

Sn and Sp that their values can rarely ever exceed those

given by —— and — I ydA, When a beam is deep

vertically and carries a concentrated load at the center,

the value of V is constant for all sections up to the

middle of the beam. Therefore it is possible in such a

beam that the maximum value of S^ may exceed the

3Icmaximum value of S as found from — . This is espe-

cially true of beams having I sections, as the value of the

static moment of the flanges is nearly as large as the

moment of the whole area above the neutral axis. The

value of Sf^ in the web just below the flange being very

large, for a section just to the left of the load where Vis

a maximum and S nearly so, the values of aS',^ and aS^^ may
be greater than the maximum values of S and Sj^,
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The shearing stress S^ at any point of the beam is a

stress that is inclined at angles that vary from 0° to 45°

with the axis of the beam. When the beam has an I

section and is deep, these shearing stresses have a tend-

ency to cause the web to buckle. To resist this tendency

vertical angle irons are often riveted to the webs. When
a beam of an I section is composed of angle irons riveted

to a web plate, making what is known as a plate girder,

the force on the rivets joining the angles to the web can

be found from the values of >S'„ and aS'^^, and the areas over

which these stresses are distributed.

While the theory of beams as presented in Chapter III

was defective in its assumptions regarding the distribution

of the shearing stress, and its neglect of the combined

stress, this discussion shows that for the majority of beams

the formula S= -— will give the maximum bending stress

when the value of itf is a maximum. The formula may

be used for the design of all beams and the dimensions

checked for safety by determining the values of aS'^, aS^,

and Sf^.

EXAMINATION

Give some examples of bars where the forces acting

produce more than one kind of stress.

When a bar under bending forces also has a tensile or

compressive axial force acting on it, why does not the

resulting unit stress always equal the sum of the unit

stresses due to each force ?

Develop the expression

^ _ 3/(?

i±-^
^ E
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where jS^ is the maximum unit stress due to both the axial

and bending forces acting on any bar.

What assumptions are made in the development of the

formula that are not strictly true ?

When a beam which carries bending loads also has to

resist tensile or compressive loads, how can the resulting

bending moment be made practically zero ?

When a bar is subjected to both axial and shearing

forces, show that at every point of the bar there is a pair

of equal unit shearing stresses whose directions make
right angles with each other.

What is the effect of the combination of shearing with

unit tensile stresses ? Is the effect any different if the

shearing stress is combined with an equal stress in com-

pression ?

Show how to determine the value of the maximum unit

stress when tensile or compressive stresses are combined

with shearing stress ?

A bar is being acted on by tensile or compressive forces

applied in the line of the axis. Is there any shearing

stress ? How may its value be determined ?

If the maximum tensile or compressive unit stress is

given by

and the positive sign is used before the radical, what kind

of stress is aS^„?

What is meant by the expression " horizontal shear " in

beams ?

Deduce an expression for the horizontal unit shearing

stress at any point of a beam.

Under what conditions will the unit stress given by



160 MECHANICS OF MATERIALS

aS'=— be the maximum unit tensile or compressive stress

in a beam ?

Under what conditions may the horizontal shearing

stress become the most dangerous stress in the beam ?

A deep I beam is short and carries a load at the middle.

Is it possible that at some point in the beam there may
be a unit tensile or compressive stress greater than that

Mc
given by S= —=- when the value of 3Iis that of the maxi-

mum bending moment for the beam?

When a beam is rectangular in section, where will the

maximum unit shearing stress be found? Is the same

true for beams of other sections ?

PROBLEMS

1. A roof with two equal rafters has a span of 40

ft. and a rise of 15 ft. If the weight of the rafter is

neglected, determine the size of the rafters 6 in. wide

when each rafter carries a uniform load of 50 lb. per foot.

Assume the allowable unit stress as 600 lb. / sq. in.

2. Assume the rafters in problem l to carry a load of

1000 lb. at the middle, instead of the uniform load, and

find the depth of the rafters for the same unit stress.

3. A simple wooden beam, 30 ft. long, 12 in. deep, and

4 in. wide, carries a single load of 320 lb. at the middle

and an axial compressive load of 14,400 lb. Find the

maximum unit stress in the beam,

(rt) by the approximate method,

(h) by the more exact method.

4. A simple steel I beam 20 ft. long, 12 in. deep,

weighing 35 lb. / ft., carries a uniformly distributed load
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of 500 lb. /ft. and sustains a compressive load of 40,000

lb. Is it safe if a factor of safety of 5 is needed ?

5. Find the points of application of the compressive

loads in problem 4 so that the unit stress resulting from

the effect of the loads will be as small as possible.

6. A steel eye bar 30 ft. long has a section area of

2 by 6 in. The eye bar is to be used horizontally, and

carries a tensile load of 288,000 lb. Determine the dis-

tance from the center of the eyes to the axis of the bar so

that the resulting unit stress will be as small as possible.

7. Determine the value and location of the maximum
unit shearing stress in the beam as given in problem 3.

8. If the point of application of the compressive forces

in problem 3 is taken so as to neutralize the effect of

the central load, determine the value of the maximum
shearing unit stress.

9. A simple steel I beam, 20 ft. long, 12 in. deep,

weighing 35 lb. /ft., carries a concentrated load of 30,000

lb. at the middle. Determine the maximum horizontal

unit shearing stress. What is the value of the total

maximum shearing force ?

10. Given the same beam as in problem 9, carrying

the same loads, find the difference between the maximum
unit tensile stress and the stress given by the formula

a Mo

11. A horizontal steel shaft, 5 in. in diameter, is 20

ft. between bearings, and carries a load of 1200 lb. at

the center. It transmits 250 H.P. at 100 revs. /min.

Required the maximum unit stress induced.

12. A standard 2-in. steel bolt is screwed so as to

cause a unit tensile stress of 10,000 lb. /sq. in. What
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shearing force may be resisted if the maximum unit

stress is not to exceed 15,000 lb. /sq. in.?

13. How many 1-in. standard steel bolts must be used

to resist a shearing force of 300,000 lb. if the tensile stress

due to screwing up is assumed to be 10,000 lb. /sq. in.

and the allowable maximum unit stress is taken as 12,000

lb. /sq. in.?

14. An angle iron is bolted to the side of an I beam

and supports another beam whose reaction at the sup-

ported end is 50,000 lb. Select a number of 1-in. bolts

to carry the load. Assume that the unit stress in each

bolt due to screwing up is 12,000 Ib./sq. in., and the

factor of safety is 4.



CHAPTER VIII

COMPOUND BARS AND BEAMS

Art. 83. Definition.

When a bar is composed of more than one kind of

material it is sometimes termed a compound

bar. The formulas derived in the previous

chapters apply only to bars made of one

material throughout. This chapter will be

devoted to the investigation of a few of the

simpler cases of stress in the compound bars.

Art. 84. Compound Columns; alternate layers.

A column or pier built with alternate layers

of different materials, as in Fig. 84, will evi-

dently carry only the load the weaker section

will support. The unit stress in any section

may be found when the area of the section is known, as

each section has to support the entire load.

When the modulus of elasticity of the material and the

length of each section are known, then the amount of

shortening for each section can be found as for simple

bars. The total shortening of the entire column is the

summation of the deformations of the different sections.

Art. 85. Compound Columns ; longitudinal layers.

When a column is composed of different materials

arranged longitudinally, the column becomes a bundle

lf)3

Fig. 84.
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of simple bars. Each bar does not carry a part of the

total load that is proportional to its area as in the i^ve-

vioLis case. All the bars have the

same amount of deformation, and when

^ ^
the unit stress is within the elastic limit,

^ j^ -^ the unit stress in each bar must vary

4 Xy y\ directly as the modulus of elasticity.

In Fig. 85 let U^, E^, U^, be the

moduli of elasticity of the three bars,

i Z 3 and the areas be A^^ A^, A^^ and the

common deformation and length, e and

I; then.-i__

z

k t« I ^1
_s^

E^ = Sd
^ e

P
Fig. 85.

Writing for S-^^ S^^ and S^^ their values

in terms of the loads and areas, we have

A^3
a)

As the sum of the partial loads must be equal to the total

load,

P = P, + P, + P,. (2)

Equations (1) and (2) will suf-

fice to fully determine the values

of the partial loads Pj, P2' ^^^^

Pg, when the length, moduli of

elasticity, and areas are known.

The above discussion will ap-

ply equally well to compound

bars under tensile forces, as the ^^^' ^^""

stress in each case is the result of an axial force.
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Art. 86. Compound Beams.

When a beam is composed of two different materials,

the load carried by the beam is divided between the

two beams of the different materials in a similar manner

as in the case of a compound bar under compressive

forces (Fig. 86). The deflection for each part of the

loeam. is the same, and if the deflection is expressed as

•^ I3FI
, then in the given case

,and W=W^-\-W^.

In the above expressions W is the total load carried by

the beam and W^ and W^ are

the partial loads carried by

each material of the beam.

The equations will suffice

to determine the safety of a

compound beam under any

loading.

To design a beam to be

composed of wood and steel,

the size and shape of either

material may be assumed and

the load it will carry with a

safe unit stress calculated. Either TF^ or W^ being found,

the other becomes known at once.

The shape of the required part of the beam may be

found from the equations resulting from the equality of

the deflections. The solution is a tentative one, as the

unit stresses must all be within the elastic limit for the

•equations to hold true.

Fig. 866.
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Art. 87. Reenforced Concrete Beams.

Concrete, being a material strong in compression and

rather weak in tension, is not suitable as a material for

use in beams. To remedy the defect in tensile strength,

steel rods are embedded in the concrete below the neutral

axis. The steel supplies the tensile strength that is lack-

ing in the concrete, and as the concrete is fireproof and

non-corrosive, the combination of concrete and steel,

known as reenforced concrete, is used extensively in all

building operations. Steel I beams are often imbedded

in concrete, but this is done mainly to protect the beam

from corrosion.

The common theory for the design of reenforced con-

crete beams neglects the tensile strength of the concrete

and considers the entire tensile load to be carried on the:

steel reenforcement.

Experiments made on concrete in compression do not

agree as to the possible variation of the modulus of elas-

ticity with the unit stress. The theory given here assumes

that the value of the modulus of elasticity is constant for

all stresses that are allowable in engineering structures.

The so-called parabolic formulas are derived on the assump-

tion that the value of .£' decreases with an increase of stress.

With a fair value of the ratio of the areas of steel to

concrete the two formulas give nearly the same results.

Art. 88. Straight Line Formula.

In the derivation of the straight line formula for the

strength of reenforced beams the following assumptions

are made

:

1. That the unit compressive stress in the concrete

varies directly as the distance from the neutral axis.
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2. That the unit tensile stress in the steel reenforce-

ment is constant and depends on the distance of its center

of gravity from the neutral axis.

3. That the entire tensile stress is carried by the steel

reenforcement, the tensile strength of the concrete being

neglected.

4. That the neutral axis is located so that the tensile

resistance of the steel is equal to the total compressive

resistance of the concrete.

I v2j_

Fig. 88.

5. Perfect adhesion between the steel and concrete.

6. That the value of the modulus of elasticity of the

concrete is constant.

Let Fig. 88 represent a portion of a reenforced concrete

beam, and X-X the location of the dangerous section.
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Notation

d = the depth of the beam.

b = the breadth of the beam.

z = the ratio of the sectional area of the steel reen-

forcement to the sectional area of the concrete

above the center of gravity of the steel.

S^ = the maximum unit compressive stress in the concrete.

S( = the maximum unit tensile stress in the steel.

U^ = the modulus of elasticity of the concrete.

Ug = the modulus of elasticity of the steel.

7^

y = the ratio —^.

d^ = the distance of the outer compression fiber in the

concrete to the center of gravity of the steel.

X = the ratio of the depth of the neutral axis to the

depth of the center of gravity of the steel, both

being measured from the outer fiber of the con-

crete in compression.

xd^ = the distance of the neutral axis from the outer fiber

of the concrete in compression.

Mr = the maximum moment of resistance.

31= the maximum bending moment for the beam.

e = the depth of concrete below the center of gravity

of the steel.

I = the length of the beam.

Linear unit, the inch ; unit of weight, the pound.

For equilibrium, the resultant of the compressive

stresses in the concrete must be equal to the tensile stress

in the steel, and the moment of the couple formed by

these two forces must be equal to the bending moment

for the beam.
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Since all the stresses are within the elastic limit, the

deformation of the fibers of the concrete and steel are pro-

portional to their distance from the neutral axis ; hence

Solving for S^ and writing ^ for the ratio of U^ to U,,

we have

S, = S, / . (2)
?/(l - x^

Solving (2) for x, we have

X =
1 +^ (-3)

The area over which the compressive forces is dis-

tributed being xd^h while that for the steel is zd^b, and

since the total forces are equal,

zd,bS, = '^S„ovzS, =^. (4)

Substituting for x its value taken from (3) and solving

for z^ we have

^ =—Tory oT- (^)

2 ?^ 1 +

Equation (5) gives the required value to the ratio z

in order that the given values of Sc and Sf may be de-

veloped. (It must be noticed that z depends for its value

on the relative values of S^^ Sf^ E^, and E^-, and can not be

assumed at will, if the full strength of the steel and con-

crete is to be made available.)
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Eliminating S^ from (2) and (4), we have

X/" X \ x^
2 =T7 (6)•2\il-x)yJ 2(l-:.)y

and solving for x,

Equation (7) gives the ratio x in terms of ^ and z;

hence the location of the neutral axis may be found when

these ratios are known.

The value of the resisting moment can be found by

taking the moment of the tensile force in the steel reen-

forcement about a point in the line of action of the result-

ant of the compressive forces in the concrete; therefore,

Mr = S,zdMd^ -
-^J

= S^zhdMl -
Ij.

(8)

The value of Mj. may be found in terms of S^ in a

similar manner to be

M^=S,^(l-l). (9)

Equating the maximum bending moment for a given

beam to the value of M^ as given by either equations

(8) or (9) will give a relation between the bending

moment and the dimensions of the beam. The resulting

equations may be used to investigate the safety of a

given beam or to design a beam to carry a given load.

When the ratio z is given, equation (5) shows that

the ratio of —̂ must have a definite value.

If the given value of z is larger than necessary, the

full strength of the steel will not be utilized. The

allowable value of S^ becomes the limiting factor, and its



COMPOUND BARS AND BEAMS 171

value may be assumed. This assumed value used in

equation (5) will determine the value of the unit stress

in the steel.

On the other hand, when the value given for z is too

small, the safe unit stress in the steel becomes the limit-

ing condition and the full safe strength of the concrete

can not be made available. In any case neither S^ or aS'^

can exceed the elastic limit of the material and should

not exceed a safe working stress.

The depth, g, of the concrete below the center of grav-

ity of the steel does not enter into the formula, as the

tensile strength of the concrete is neglected. Evidently,,

to get the most value for the steel reenforcement it should

be placed as close to the lower side of the beam as pos-

sible. The assumption that the bond between the steel

and the concrete is perfect requires that there shall be

a reasonable thickness of concrete around the steel.

Therefore the depth e must be determined by practice.

The depth should never be less than one inch.

The extensive use of reenforced concrete is of compara-

tively recent date, and while there has been a great deal

of experimental work done on reenforced concrete beams

and columns, much more will have to be done before the

theory for their design can be considered as good as that

for beams of one material. There are so many variable

conditions to be taken into account that various experi-

menters have arrived at seemingly contradictory results.

The formula as given here is the one in general use

and appears to give reliable results. The allowable unit

stresses are generally taken lower than the usual practice

for the same materials under conditions where the effect

of the load is better understood.
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The form of the steel reenforcement is a subject to

Avhich experimenters have given a great deal of attention,

the object being to find the form that will insure the

best bond between the steel and the concrete.

The value of the modulus of elasticity for concrete

depends on the proportions of cement, sand, and broken

stone in the concrete. The value of E ranges from

4,000,000 to as low as 850,000, the lower value being for

a cinder concrete and the upper value for a 1 : 1|- : 3

mixture. A fair average value for E may be assumed

to be 3,000,000. Taking the modulus of elasticity of

steel as 30,000,000, the ratio of ^^ = 10. The allowable

unit stress in steel may be taken as varying from 10,000

to 12,000 Ib./sq. in. for steady loads and the correspond-

ing value of the safe unit stress in the concrete ranges

from 500 to 600 Ib./sq. in. The ratio of -^ then be-

comes about 20.

These values inserted in equation (5) give a value of z

as slightly over .8 per cent. The usual values of z range

from .75 per cent to 1.50 per cent.

To determine the safety of a reenforced concrete beam

carrying a given load, first find the limiting value of the

unit stress in the steel or concrete. This being done,

the equation resulting from placing the maximum bend-

ing moment of the beam equal to the right hand member

of either equation (8) or (9), as the unit stress in the

steel or concrete is the limiting stress, will suffice to

determine the value of that stress.

To design a reenforced beam, z may be assumed and

limiting stress found, or z may be calculated by the use
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of either equations (4) or (5), using the maximum allow-

able values for jSf and S^. Either b or d^ may be assumed,

and equating the maximum bending moment for the

beam to the expression for the resisting moment will

suffice to determine the other dimension. The total

depth d is equal to d-^ + e, where e must be assumed

empirically.

If z is assumed, the equation for the resisting moment

that depends for its value on the limiting stress must

be used.

EXAMINATION

What is a compound bar ?

When a compound bar is used as a short column, will

the formula for axial compression always give the true

maximum unit stress ? Explain your answer fully, giving

reasons.

When a beam is composed of more than one kind of

material, name the conditions that are used to determine

the part of the load carried by each material.

What is meant by " reenforced concrete " ?

In the development of the " straight line " formula for

the strength of a reenforced concrete beam, certain assump-

tions are made. What are they ?

Can the tensile stress in the steel, the maximum com-

pressive stress in the concrete, and the ratio of the section

area of the steel to that of the concrete be assumed at will ?

How many of the three can be assumed ?

Equation (8) of Art. 88 is an expression for the resist-

ing moment for a reenforced concrete beam. Explain why
it is true.

If the ratio z is too large, what can you say of the unit

stress in the steel ?
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If z is too small, can the full strength of the concrete be

made available ? Explain fully.

PROBLEMS

1. A wooden column, section area 36 sq. in., is used to

support a floor. The load on the floor is to be increased

and a hollow circular cast iron column 6 in. external and

4 in. internal diameter is placed beside the wooden column.

What part of the total load will each carry ?

2. A load of 60,000 lb. is to be carried on a hollow cast

iron column 6 in. internal diameter. The interior of the

column is filled with concrete ; how thick should the cast

iron be if the maximum unit stresses in the cast iron and

concrete are 3000 and 600 Ib./sq. in., respectively?

3. If the column in problem 2 was filled with wood
instead of concrete, how thick should the cast iron be

made ?

4. A standard 6-in. steel pipe is encased in concrete

2 in. thick and used as a column. How much more load

may be carried with, than without, the concrete ?

5. Two standard 12-in. steel channels weighing 25

lb. /ft. are to be bolted to the sides of a wooden beam 4

in. wide, 12 in. deep, and 20 ft. long. What uniform load

including the weight of the beam may be carried ? Maxi-

mum unit stress in the steel 12,000 Ib./sq. in., and 600

Ib./sq. in. in the wood.

In the following problems the maximum allowable unit

stress in the concrete may be taken as 600 Ib./sq. in. and

steel as 12,000 Ib./sq. in., and the value of y as 10.

6. A reenforced concrete beam 6 in. deep, 4 ft. wide,

and 6 ft. span has 2 sq. in. of steel reenforcement placed

2 in. from the lower side. What uniform load including
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its own weight will it carry? What are the maximum
unit stresses in the steel and the concrete ?

7. Find the proper area for the steel in a beam similar

to the one given in problem 6.

8. A concrete beam 10 ft. long and 6 in. square is to be

reenforced by steel rods placed 2 in. from the lower side.

Find the proper area for the steel reenforcement.

9. What uniform load will the beam in problem 8 carry

with safety ?

10. What load could be carried without any reenforce-

ment, assuming the tensile stress in the concrete to be 150

Ib./sq. in.?
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TABLES. — EXPLANATION OF

Table I. Notation.

The number following the description of each symbol refers to the

article where the symbol was introduced.

Table II. Fundamental Formulas.

Table III. Derived Formulas.

The numbers following each expression refer to the chapter and

article in which the formula was derived.

Table IV. Properties of Beams.

The columns 1 and 2 give the relative strengths and stiffness of the

various kinds of beams of the same length and shape. Columns 3 to 6

are the expressions for Maximum Vertical Shear, Bending Moment,

Unit Stress, and deflection 'of the various beams under uniform and

single concentrated loads. Columns 7 and 8 give the values of a and /3

for the various beams ; for a description of these symbols see : for a,

Art. 48
; ^, Art. 64.

Table V. Constants of Materials.

This table has been compiled solely for the use of the student in

solving the problems in the text. As all the constants are liable to

considerable variation, it should not be used in the design of a structure

that is to be built.

Table VL Properties of Sections.

In the rectangular sections d is the dimension in the direction of

bending. In the hollow sections d^ and h^ are the inside dimensions.

Tables VII and VIII. Properties of I and Channel Beams.—
Cambria Steel.

These tables have been inserted for the convenience of the student.

As every engineer should own some of the trade books giving the

properties of the various steel shapes, he will prefer to get his data

first hand.

NOTATION.— TABLE I

A area of cross section. 4.

a a distance. 72.

b breadth of a beam. 41.

C, Cj, Cg, etc. constants of integration. 64.
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c distance from neutral axis to most distant fiber. 40.

D internal diameter of a pipe. 24.

D mean diameter of coils (helical springs only). 61.

Z)j external diameter of thick pipe. 25.

d diameter of rivets. 27.

d diameter of bolts in shaft couplings. 59.

d diameter of wire for helical springs. 61.

d dej^th of a beam. 41.

d^ a distance (reenforced concrete only) . 88.

E modulus of elasticity. 12.

Et^ Ec modulus of elasticity for concrete and steel (reenforced con-

crete only). 88.

e total deformation in length of bar. 11.

e a distance (reenforced concrete only). 88.

F factor of safety. 21.

F shearing modulus of elasticity. 56.

f maximum deflection for a beam. 73.

h distance bet\Yeen parallel axes. 74.

/ rectangular moment of inertia. 40.

J polar moment of inertia. 52.

J' polar moment of inertia of bolts about shaft axis (shaft coup-

lings only). 59.

K total elastic resistance of a bar. 18.

k elastic resistance of a material. 17.

I a length. 11.

M the bending moment. 40.

il/j, il/g bending moments due to resultant couples. 64.

AIj. moment of resistance (reeiiforced concrete only). 88.

N number of revolutions per minute. 58. .

iVp iVg, iVg bending moments at the supports in continuous beams.

67.

n number of concentrated loads on a beam. 64.

n constant depending on kind of column. 73.

n number of bolts in a shaft coupling. 59.

P external force. 4.

p pitch of rivets. 30.

p a distance. 43.

p arm of twisting moment. 52.

R pressure per square unit. 24.

r radius of curvature. 63.

r radius of gyration. 73.
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Tij, Tig, T13 reactions at the supports of a beam. 36.

5 unit stress, with subscripts t, c, and s for unit stress in tension,

compression, and shear. 9.

Sh horizontal unit shearing stress in beams. 81.

Sjj, Sn maximum shearing and tensile unit stresses due to combined

stresses. 80.

t thickness. 24:.

W weight of a box or beam. 23.

W total uniform load on beam, may include weight of beam. 36.

iv weight of a cubic unit of material. 23.

w width of plate. 27.

w uniform load on beam per linear unit. 36.

X, y variable distances.

X, y, z ratios (for concrete beams only). 88.

a, (i material constants. 46, 64.

<^ constant depending on material. 73.

B angle of twist. 52.

FUNDAMENTAL FORMULAS. — TABLE II

Tension, Compression, and Shear

(a) P = AS. Chap. I, Art. 4.

Applies to all cases of uniformly distributed stress.

Modulus of Elasticity for Tension and Compression

(h) E = - = ^. Chap. I, Art. 11.
e Ae

Applies to all problems where the unit stress in tension or com-

pression is within the elastic limit.

Beams. — Vertical Shear

(c) V=AS. Chap. Ill, Art. 39.

True for all values of S.

Bending Moment

(d) M =— . Chap. Ill, Art. 40.
c

Applies to all problems where the value of S is within the elastic

limit.
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Twisting Moment in Shafts

<e) Pp = —. Chap. IV, Art. 53.
c

Applies to all problems where the value of S is within the elastic

limit.

Equation of Elastic Curve

EI-^ = iM. Chap. V, Art. 6:].

DERIVED FORMULAS.— TABLE III

Strength of Bars of Uniform Strength

logio A = 0.434 - y + logio Aq. Chap. II, Art. 23.
w

Thickness of Steam and Water Pipes, Cylinders, etc.

Thin pipes

:

Longitudinal ruptures.

RD = 2 St. Chap. II, Art. 24.

Circumferential ruptures.

RD = 4: St. Chap. II, Art. 24.

Thick pipes

:

Longitudinal ruptures.

RD^ = 2 St. Chap. II, Art. 25.

Strength of Riveted Joints

Tension in plate. KP — ^O'^t = ^t- Chap. II, Art. 30.

Shear on rivet. ^^ S^ = P,. Chap. II, Art. 30.

Compression on rivet or plate. c-^tdSc = Pc Chap. II, Art. 30.

Horse Power of Shafts

H= ^^^^ (approx.) = _M^, Chap. IV, Art. 58.
63,000^ ^^ ^ 63,000 c

^
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Shaft Couplings

Diameter of bolts. Pp = 7i^ S/'h (approx.). Chap. IV, Art. 59.
•1

Helical Springs

Strength. p = l^Ss.

Deflection. S =^^ = %^. Chap. IV, Art. 61.
-tcl^ Fa

Continuous Beams. — Three-moment Equation

^A + 2 iV^ (I, + h) + 7VV2 = - ^^Vi' + ^^2'
. Chap. V, Art. 67.

Long Columns

Round ends.

Euler. P = ^If^. Chap. VI, Art. 70.

AS
Rankine. P = —- . Chap. VI, Art. 73.

l+<^lL

Square ends.

Euler. P = 4 ^^. Chap. VI, Art. 71.

Rankine. P = ^^^
- Chap. VI, Art. 73.

Round and square ends.

Euler. P = ^ ^I^, Chap. VI, Art. 72,

Rankine. P = ^"^'^^
. Chap. VI, Art. 73.

I + ^IT^'9 r^

Combined Stresses

Tension or compression with bending.

S = ^+ ———., Chap. VII, Art. 76.

)g E
p ^^c

or S = h -— (approx.).



DERIVED FORMULAS.— TABLE III 1«1

Maxiiimm tension, compression, or shear.

Tension or compression combined with shear.

Max. shear.

Max. tension or

compression.

Sp = ± VSs^ + i S-^. Chap. YII, Art. 80.

Sn = lS± VS;^ + i S^. Chap. YII, Art. 80.

Horizontal Shearing Stresses in Beams

S^ =-^ CydA. Chap. VII, Art. 8L
clxlb •Jy-i

and

Reenforced Concrete Beams

M= StzbdMl--\

X

3
il/=,Se^7l-^'].

> Chap. VII, Art. 88.
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INDEX

Axial force, 3.

Bar, A compound, 165,

Definitiou of, 3.

of uniform strength, 22, 179.

Beams, Compound, 163.

Continuous, 109, 180.

Deflection of, 102.

Kinds of, 46.

_Maximum stress in, 156.

of uniform strength, 66.

Overhanging, 65.

Reactions at the supports of, 47.

Reenforced concrete, 1(56, 181.

Relative strengths of, 64.

Restrained or fixed, 105, 106, 107.

Bending moment, in beams, 50, 178.

Relation between vertical shear

and, 63.

Columns, Long, 123.

Euler's formula for, 125, 180.

Rankine's formula for, 131, 180.

Compound bars and beams, 163.

Compression combined with shear, 149.

Formula for, 3, 178.

Concrete beams, Reenforced, 166, 181.

Continuous beams, 109, 180.

Dangerous section in beams, 63.

Deformation, of elastic bodies, 7.

Unit, 7.

Ductility, 11.

Elastic Limit, 8.

Commercial, 9.

Elastic curve, 48, 99.

Equation of the, 99, 179.

Elasticity, Modulus of, 8, 178.

Euler's formula for long columns, 125.

Factors of safety, 14.

Force, Internal and external, 6.

Formula, Table of fundamental, 178.

Table of derived, 179.

Helical springs, 93.

Horizontal shear in beams, 152.

Load, Concentrated or uniform — on
beams, 47.

Eccentric axial— on beams, 148.

Moving— on beams, 67.

Materials, Constants of, 13, 183.

Modulus of.

Elasticity, Tension or compression,
8.

Elasticity, Flexure, 102.

Elasticity, Torsion, 88, 183.

Rupture, Tension or compression, 3.

Rupture, for beams, 55.

Rupture, for torsion, 92.

Section, Beams, 56.

Section, Torsion, 86.

for beams, 56.

Moment, Bending, 50, 178.

Diagram, 58.

Resisting, 52.

Neutral axis or plane, 53.

Notation, Table of, 176.

Pipes, Thin, strength of, 25, 179.

Thick, strength of, 179, 27.

Rankine's formula for long columns,
131.

Reactions for beams, 47.

Reenforced concrete beams, 166.

Resilience, 10.

Ultimate, 11.

Elastic, 12.

Riveted joints, .30.

Compression in, 33, 179.

Etiiciency of, 37.

185
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Riveted joints {continued)

General case of, 06.

Kinds of, 35.

Slieai- in, 32, 179.

Tension in, 30, 179.

Sections, Pi-operties of, 18i.

Square — in Torsion, 8G.

Shafts, Couplings for, 90, 180.

Horse power of, 89, 179.

Strength and stiffness of, 89.

Twist of, 88.

Twisting moment in, 179.

Shear, and axial stress, 149.

Diagrams, 58, 59.

Horizontal shear inheams, 152, 181.

Resisting, 51.

Vertical— in beams, 49, 179.

Shearing stress, 5.

Springs, Helical, 93, 180.

Strength, Bars of uniform, 22, 179.

of cylinders, pipes, and spheres, 25.

of thick pipes, 27.

Ultimate— of materials, 9.

Stress, 3.

Stress, Combined, 143, 180, 181.

in roof rafters, 147.

in long columns, 123.

due to change of temperature, 39.

Maximum— in beams, G3, 150.

Maximum— tensile or compressive,
5, 178.

Shearing, 5, 178.

Tensile or compressive, 4.

Unit, 4.

Working, 14.

Tables : Constants of materials, 183.

Derived formulas, 179.

Fundamental formulas, 178.

Notation, 176.

Properties of beams, 182.

Properties of sections, 184.

Tension, combined with bending, 144.

combined with shear, 149.

Formula for, 3, 178.

Torsion, Derivation of formula for, 83.

Modulus of elasticity for, 183.

Vertical shear, 49.

Relation between the bending mo-
ment and, 63.

Yield point, 9.
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tion of Energy: Its Transformation, Transmission, and Distri-

bution, 12mo, cloth, illustrated In Press.

and IHLSENG, M. C. Electricity in Mining, being
a Theoretical and Practical Treatise on the Construction, Opera-
tion, and Maintenance of Electrical Mining Machinery, 12mo,
cloth, illustrated In Press.

JAMIESON, ANDREW, C.E. A Text-Book on Steam and
Steam-Engines. Specially arranged for the Use of Science and
Art, City and Guilds of London Institute, and other Engineering
Students. Fourteenth Edition, revised. Illustrated. 12mo, cloth.

$3.00

Elementary Manual on Steam, and the Steam-Engine.
Specially arranged for the LTse of First-Year Science and Art,

City and Guilds of London Institute, and other Elementary
Engineering Students. Tenth Edition, revised. 12mo, cloth. $1.50

JANNETTAZ, EDWARD. A Guide to the Determination
of Rocks: being an Introduction to Lithology. Translated from
the French by G. W. Plympton, Professor of Physical Science at

Brooklyn Polytechnic Institute. 12mo, cloth $1 .50

JOHNSTON, Prof. J. F. W., and CAMERON, Sir CHARLES.
Elements of Agricultural Chemistry and Geology. Seventeenth
Edition. 12mo, cloth $2 . 60

JONES, Prof. H. C. The Electrical Nature of Matter and
Radioactivity. 12mo, cloth, illustrated $2,00

KAPP, GISBERT, C.E. Electric Transmission of Energy,
and its Transformation, Subdivision, and Distribution, A prac-

tical handbook. Fourth Edition, revised. 12mo, cloth. .. . $3.50
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KEMP, JAMES FURMAN, A.B., E.M. A Handbook of
Rocks; for use without the microscope. With a glossary of the
names of rocks and other lithological terms. Second Edition,

revised. 8vo, cloth, illustrated $1 .50

KLEIN J. F. Design of a High-Speed Steam-engine.
With notes, diagrams, formulas, and tables. Second Edition,

revised and enlarged. 8vo, cloth, illustrated. 257 pp.. .net, $5.00

KNIGHT, A. M., Lieut.-Com. U.S.N. Modern Seaman-
ship. Illustrated with 136 full-page plates and diagrams. 8^o,
cloth, illustrated. Third Edition, revised net, $6.00
Half morocco $7 . 50

KNOTT, C. G., and MACKAY, J. S. Practical Mathematics.
With numerous examples, figures, and diagrams. New Edition.
8vo, cloth, illustrated $2 .00

KRAUCH, C, Dr. Testing of Chemical Reagents for
Purity. Authorized translation of the Third Edition, by J. A.
Williamson and L. W. Dupre. With additions and emendations
by the author. 8vo, cloth net $4 . 50

LASSAR-COHN, Dr. An Introduction to Modern Scien-
tific Chemistry, in the form of popular lectures suited to Univer-
sity Extension Students and general readers. Translated from
the author's corrected proofs for the second German edition by
M. M. Pattison Muir, M.A. 12mo, cloth, illustrated $2.00

LODGE, OLIVER J. Elementary Mechanics, including
Hydrostatics and Pneumatics. Revised Edition. 12mo, cloth.

$1.50

LUCKE, C. E. Gas Engine Design. With figures and
diagrams. Second Edition, revised. 8vo, cloth, illustrated.

net, $3.00

LUQUER, LEA McILVAINE, Ph.D. Minerals in Rock Sec-
tions. The Practical Method of Identifying Minerals in Rock
Sections with the Microscope. Especially arranged for Students
in Technical and Scientific Schools. New Edition, revised. 8vo,
cloth. Illustrated net, $1 . 50

MARKS, G. C. Hydraulic Power Engineering. A Prac-
tical Manual on the Concentration and Transmission of Power
by Hydraulic Machinery. With over 200 diagrams and tables.

8vo, cloth, illustrated $3 . 50
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MARSH, C. F. Reinforced Concrete. With full-page and
folding plates, and 512 figures and diagrams. 4to, cloth, illus-

trated net, $7.00

MERCK, E. Chemical Reagents; Their Purity and
Tests In Pi-ess.

MILLER, E. H. Quantitative Analysis for Mining Engi-
neers. 8vo, cloth net, $1 . 50

MINIFIE, WM. Mechanical Drawing. A Text-Book of
Geometrical Drawing for the use of Mechanics and Schools, in

which the Definitions and Rules of Geometry are familiarly ex-

plained; the Practical Problems are arranged from the most
simple to the more complex, and in their description technicali-

ties are avoided as much as possible. With illustrations for

Drawing Plans, Sections, and Elevations of Railways and Ma-
chinery: an Introduction to Isometrical Drawing, and an Essay
on Linear Perspective and Shadows. Illustrated with over 200
diagrams engraved on steel. Tenth Thousand. With an appen-
dix on the Theory and Application of Colors. 8vo, cloth. . $4.00

Geometrical Drawing. Abridged from the Octavo
Edition, for the use of schools. Illustrated with 48 steel plates.

Ninth Edition. 12mo, cloth $2.00

MOSES, ALFRED J., and PARSONS, C. L. Elements of
Mineralogy, Crystallography, and Blow-Pipe Analysis from a
Practical Standpoint. 336 illustrations. New and enlarged

Edition. 8vo, cloth $2 . 50

MOSS, S. A. Elements of Gas-Engine Design. Reprint
of a Set of Notes accompanying a Course of Lectures delivered

at Cornell University in 1902. 16mo, cloth, illustrated, (^'an

Nostrand's Science Series.) $0 . 50

NASMITH, JOSEPH. The Student's Cotton Spinning.
Third Edition, revised and enlarged. 8vo, cloth, illustrated. . $3 . 00

NIPHER, F. E., A.M. Theory of Magnetic Measurements.
With an Appendix on the Method of Least Squares. 12mo,
cloth $1 . 00

NUGENT, E. Treatise on Optics; or, Light and Sight
theoretically and pi-actically treated, with the application to Fine
Art and Industrial Pursuits. With 103 illustrations. 12mo,
cloth $1.50
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OLSEN, Prof. J. C. Text-Book of Quantitative Chemical
Analysis by Gravimetric, Electrolytic, Volumetric, and Gaso-
metric Methods. With seventy-two Laboratory Exercises giving

the analysis of Pure Salts, Alloys, Minerals, and Technical Prod-
ucts, becjnd Edition, reiised. 8vo, cloth, illustrated. 513 pages.

nei,$4.00

OUDIN, MAURICE A. Standard Polyphase Apparatus and
Systems. With many diagrams and figures. Third Edition,

thoroughly revised. Fully illustrated '3 .00

PALAZ, A., Sc.D. A Treatise on Industrial Photometry,
with special application to Electric Lighting. Authorized transla-

tion from the French by George W. Patterson, Jr. 8vo, cloth,

illustrated $4.00

PARSHALL, H. F., and HOBART, H. M. Armature Wind-
ings of Electric Machines. With 140 full-page plates, 65 tables,

and 165 pages of descriptive letter-press. 4to, cloth.... $7.50

PATTON, H. B. Lecture Notes on Crystallography.
Revised Edition, largely rewritten. Prepared for use of the stu-

dents at the Colorado School of Mines. With blank pages for

note-taking. 8vo, cloth net, $1 .25

PAULDING, CHAS. P. Practical Laws and Data on Con-
densation of Steam in Covered and Bare Pipes. Svo, cloth,

illustrated. 102 pages net, $2.00

The Transmission of Heat through Cold-storage In-
sulation. Formulas, Principles, and Data relating to Insulation
of every kind. A Manual for Refrigerating Engineers. 12mo,
cloth. 41 pages, illustrated net, $1 .00

PERRINE, F. A. C, A.M., D.Sc. Conductors for Electrical
Distribution; Their Manufacture and Materials, the Calculation
of the Circuits, Pole Line Construction, Underground Working
and other Uses. With diagrams and engravings, iiecond Edition,
revised. Svo, cloth net, $3 . 50

PERRY, JOHN. AppUed Mechanics. A Treatise for the
Use of Students who have time to work experimental, numerical,
and graphical exercises illustrating the subject. 650 pages. 8vo.
cloth net, $2. 50
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PLATTNER. Manual of Qualitative and Quantitative Analy-
sis "with the Blow-Pipe. From the last German edition, revised

and enlarged, by Prof. Th. Richter, of the Royal Saxon Mining
Academy. Translated by Prof. H. B. Cornwall, assisted by
John H. Caswell. Illustrated with 78 woodcuts. Eighth Edition,

revised. 463 pages. 8vo, cloth net, $4.00

POPE, F. L. Modem Practice of the Electric Telegraph.
A Technical Handbook for Electricians, Managers, and Operators.
Seventeenth Edition, reioritten and enlarged, and fully illustrated.

8vo, cloth $1 . 50

PRELINI, CHARLES. TunneUng. A Practical Treatise
containing 149 Working Drawings and Figures. "With additions
by Charles S. Hill, C.E., Associate Editor "Engineering News."
Third Edition, revised. 8vo, cloth, illustrated $3 . 00

Earth and Rock Excavation. A Manual for Engi-
neers, Contractors, and Engineering Students. Second Edition,

revised. 8\o, cloth, illustrated 350 pp net, S3. 00

Retaining Walls and Dams. 8vo, cloth, illustrated.

In Press.

PRESCOTT, Prof. A. B. Organic Analysis. A Manual of
the Descriptive and Analytical Chemistry of Certain Carbon
Compounds in Common Use; a Guide in the Qualitative and
Quantitative Analysis of Organic Materials in Commercial and
Pharmaceutical Assays, in the Estimation of Impurities under
Authorized Standards, and in Forensic Examinations for Poisons,

w^th Directions for Elementary Organic Analysis. Fifth Edition.

8vo, cloth $5.00

Outlines of Proximate Organic Analysis, for the Iden-
tification, Separation, and Quantitative Determination of the
more commonly occurring Organic Compounds. Fourth Edition.

12mo, cloth $1 . 75

First Book in QuaUtative Chemistry. Twelfth edition.

12mo, cloth net, $1 . 50

and OTIS COE JOHNSON. QuaUtative Chemical
Analysis. A Guide in Qualitative Work, with Data for Analytical
Operations and Laboratory Methods in Inorganic Chemistry.
With an Appendix by H. H. Willard, containing a few improved
methods of analysis. Sixth revised and enlarged Edition, entirely

rewritten. 8vo, cloth net, $3 .
50"
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PROST, E. Manual of Chemical Analysis as Applied to

the Assay of Fuels, Ores, Metals, Alloys, Salts, and other Mineral
Products. Translated from the original by J. C. Smith. Part I,

Fuels, Waters, Ores, Salts, and other mineral industrial products;
Part II, Metals; Part III, Alloys. 8vo, cloth net, $4.50

RANKINE, W. J. MACQUORN, C.E., LL.D., F.R.S. Ma-
chinery and Mill-work. Comprising the Geometry, Motions,
Work, Strength, Construction, and Objects of Machines, etc.

Illustrated with nearly 300 woodcuts. Seventh Edition. Thor-
oughly revised by W. J. Millar. 8vo, cloth $5.00

The Steam-Engine and Other Prime Movers. With
diagrams of the Mechanical Properties of Steam. With folding

plates, numerous tables and illustrations. Fifteenth Edition.

Thoroughly revised by W. J. Millar. 8vo, cloth $5.00

Useful Rules and Tables for Engineers and Others.
With appendix, tables, tests, and formula^ for the use of Electrical

Engineers. Comprising Submarine Electrical Engineering, Electric

Lighting, and Transmission of Power. By Andrew Jamieson,
C.E., F.R.S.E. Seventh Edition. Thoroughly revised by W. J.

Millar. 8vo, cloth $4 .00

A Mechanical Text-Book. By Prof. Macquom Ran-
kine and E. E. Bamber, C.E. With numerous illustrations.

Fourth Edition. 8vo, cloth $3 . 50

Applied Mechanics. Comprising the Principles of
Statics and Cinematics, and Theory of Structures, Mechanics,
and Machines. With numerous diagrams. Seventeenth Edition.
Thoroughly revised by W. J. Millar. 8vo, cloth $5.00

Civil Engineering. Comprising Engineering, Surveys,
Earthwork, Foundations, INIasonry. Carpentry, Metal-Work,
Roads, Railways, Canals, Rivers, Water-Works, Harbors, etc.

With numerous tables and illustrations. Twenty-first Edition.
Thoroughly revised by W. J. Millar. 8vo, cloth $0 . 50

RATEAU, A. Experimental Researches on the Flow of
Steam Through Nozzles and Orifices, to which is added a note on
The Flow of Hot Water. Authorized translation by H. Boyd
Brydon. 12mo, cloth, illustrated net, $1 . 50

RAUTENSTRAUCH, W. Syllabus of Lectures and Notes
on the Elements of Machine Design. With blank pages for Note-
taking. 8vo, cloth, illustrated net, $2 .00
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RAYMOND, E. B. Alternating Current Engineering Prac-
tically Treated. 8vo, cloth, illustrated. 232 pp. Second Edi-
tion, revised net, %2 . 50

REINHARDT, CHAS. W. Lettering for Draughtsmen,
Engineers, and Students. A Practical System of Free-hand Let-
tering for Working Drawings. New and Revised Edition. 1 we ty-

first Thousand. Oblong boards $1 .00

RICE, Prof. J. M., and JOHNSON, Prof. W. W. On a New
Method of Obtaining the Differential of Functions, with especial

reference to the Newtonian Conception of Rates of Velocities.

1 2mo, paper $0 . 50

RIPPER, WILLIAM. A Course of Instruction in Machine
Drawing and Design for Technical Schools and Engineer Students.
With 52 plates and numerous explanatory engravings. 4to,

cloth $6.00

ROBINSON, S. W. Practical Treatise on the Teeth of
Wheels, with the theory and the use of Robinson's Odontograph.
Third Edition, revised, with additions. 16mo, cloth, illustrated.

(Van Nostrand's Science Series.) SO . 50

SCHMALL, C. N. First Course in Analytical Geometry,
Plane and Solid, with Numerous p]xamples. Containing figures

and diagrams. 12mo, cloth, illustrated net, $1 . 75

and SHACK, S. M. Elements of Plane Geometry.
An Elementary Treatise. With many examples and diagrams.
12mo, half leather, illustrated net, $1 .25

SEATON, A. E. A Manual of Marine Engineering. Com-
prising the Designing, Construction, and Working of Marine
Machinery. With numerous tables and illustrations reduced from
Working Drawings. Fifteenth Edition, thoroughly revised, enlarged,

and in part rewritten. 8vo, cloth $6.00

and ROUNTHWAITE, H. M. A Pocketbook of
Marine Engineering Rules and Tables. For the use of Marine
Engineers and Naval Architects, Designers, Draughtsmen,
Superintendents, and all engaged in the design and construction

of Marine Machinery, Naval and Mercantile. With diagrams.
Seventh Edition, revised and enlarged. Pocket size. Leather.

$3.00

SEIDELL, A. Solubilities of Inorganic and Organic Sub-
stances: a handbook of the most reliable quantitative s> lubility

deteiminations. 12mo, cloth In Press.
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SEVER, Prof. G. F. Electrical Engineering Experiments
and Tests on Direct-Current Machinery. With diagrams and
figures. Second E.dtijn. 8vo, pamphlet i lust ated. .net, $1.00

and TOWNSEND, F. Laboratory and Factory Tests
in Electrical Engineering. Second Edition, th r/Aighly revised a td

rewritten. 8vo, cloth, illustrated. 236 pp net, $2.50

SEWALL, C. H. Lessons in Telegraphy. For use as a
text-book in schools and colleges, or for individual students.

Illustrated. 12mo, cloth $1 .00

SHELDON, Prof. S., Ph.D., and MASON, HOBART, B.S.
Dynamo Electric Machinery; its Construction, Design, and Opera-
tion. Direct-Current Machines. Sixth Edition, revised. 8vo,

cloth, illustrated net, $2 . 50

—— Alternating Current Machines. Being the second vol-
ume of the authors' "Dynamo Electric Machinery; its Construc-
tion, Design, and Operation." With many diagrams and figures.

(Binding uniform with volume I.) Fourth Edition. 8vo, cloth,

illustrated net, $2 . 50

SHIELDS, J. E. Notes on Engineering Construction.
Embracing Discussions of the Pri^-ciples involved, and Descrip-
tions of the Material employed in Tunneling, Bridging, Canal and
Road Building, etc. 12mo. cloth $1 . 50

SHUNK, W. F. The Field Engineer. A Handy Book
of practice in the Survey, Location and Track-work of Railroads,
containing a large collection of Rules and Tables, original and
selected, applicable to both the Standard and Narrow Gauge,
and prepared with special reference to the wants of the young
Engineer. Eighteenth Edition, revised and enlarged. With
addenda. 12mo, morocco, tucks $2 . 50

SNELL, ALBION T. Electric Motive Power: The Trans-
mission and Distribution of Electric Power by Continuous and
Alternate Currents. With a section on the Applications of Elec-
tricity to Mining Work. 8vo, cloth, illustrated

SNOW, W. G., and NOLAN, T. Ventilation of Buildings.
16mo, cloth. (Van Nostrand's Science Series.) $0 . 50

STAHL, A. W., and WOODS, A. T. Elementary Mechan-
ism. A Text-Book for Students of Mechanical Engineering.
Fifteenth Edition, enlarged. 12mo, cloth $2.00
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STALEY, CADY, and PIERSON, GEO. S. The Separate
System of Sewerage; its Theory and Construction. With maps,

plates, and illustrations. Third Edition, revised and enlarged.

8vo, cloth $3 .00

STODOLA, Dr. A. The Steam-Turbine. With an appen-
dix on Gas Turbines and the future of Heat Engines. Authorized
Translation from the Second Enlarged and Revised German Edi-

tion by Dr, Louis CLoev/enstem. 8vo, cloth, illustrated. 434 pp.
net, $4 . 50

SWOOPE, C. WALTON. Practical Lessons in Electricity.

Principles, Experiments, and Arithmetical Problems. An Ele-

mentary Text-Book. With numerous tables, formula^, and two
large instruction plates. Seventh Edition. 8vo, cloth, illustrated.

net, $2.00

THURSO, J. W. Modem Turbine Practice and Water-
Power Plants. With eighty-eight figures and diagrams. 8vo,
cloth, illustrated net, $4.00

TOWNSEND, F. Short Course in Alternating Current
Testing. 8vo, pamphlet. 32 pp net, $0 . 75

TRINKS, W., and HOUSUM, C. Shaft Governors. 16mo,
cloth, illustrated. (Van Nostrand's Science Series.) $0.50

URQUHART, J. W. Dynamo Construction. A practical
handbook for the use of Engineer-Constructors and Electricians
in charge, embracing Framework Building, Field Magnet and
Armature Winding and Grouping, Compounding, etc., w4th ex-
amples of leading English, American, and Continental Dynamos
and Motors; with numerous illustrations. 12mo, cloth.. . $3.00.

WARREN, F. D. Handbook on Reinforced Concrete.
16mo, cloth, 271 pp., illustrated net, $2 .50

WALLING, B. T., Lieut.-Com., U.S.N., and MARTIN,
Julius. Electrical Installations of the United States Navy. 8vo.
cloth In Pj-ess

WEBB, H. L. A Practical Guide to the Testing of Insu-
lated Wires and Cables. Fifth Edition. Illustrated. 12mo,
cloth $1 .00
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WEISBACH, JULIUS. A Manual of Theoretical Mechan-
ics. Ninth American Edition. Translated from the fourth
augmented and improved German edition, with an introduction
to the Calculus by Eckley B. Coxe, A.M., Mining Engineer. 1100

pp. and 902 woodcut illustrations. 8vo, cloth $6.00
Sheep $7.50

and HERRMANN, G. Mechanics of Air Machinery.
Authorized translation with an appendix on American practice
by Prof. A. Trowbridge. 8vo, cloth, 206 pp., illustrated . net, $3 . 75

WESTON, EDMUND B. Tables Showing Loss of Head
Due to Friction of Water in Pipes. Third Edition. 12mo, leather.

$1.50

WILSON, GEO. Inorganic Chemistry, with New Notation.
Bevised and enlarged by H. G. Madan, Neio Edition. 12mo,
cloth $2.00

WRIGHT, Prof. T. W. Elements of Mechanics, including
Kinematics. Kinetics, and Statics. Seventh Edition, revised.

8vo. cloth $2.50

and HAYFORD, J. F. The Adjustment of Observa-
tions by the Method of Least Squares, with Applications to Geo-
detic Work. Second Edition. Svo, cloth, illustrated. . , .net, $3.00
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